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Vertex colouring

Definition
A k-colouring of G is a labeling f : V(G)→ {1, . . . ,k}. It is a proper
k-colouring if (x,y) ∈E(G) implies f (x) 6= f (y). A graph G is
k-colourable if it has a proper k-colouring. The chromatic number
χ(G) is the minimum k such that G is k-colourable. If χ(G)= k,
then G is k-chromatic. If χ(G)= k, but χ(H)< k for every proper
subgraph H of G, then G is colour-critical or k-critical.
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Example

Example.

1 χ(Kn)= n.

2 The chromatic number of an odd cycle is 3.

3 G= , χ(G)= 4.
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Remark

Remark. The vertices having a given colour in a proper
colouring must form an independent set, so χ(G) is the minimum
number of independent sets needed to cover V(G). Hence G is
k-colourable if and only if G is k-partite. Multiple edges do not
affect chromatic number. Although we define k-colouring using
numbers from {1, . . . ,k} as labels, the numerical values are
usually unimportant, and we may use any set of size k as labels.
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Some motivation

Example. (examination scheduling). The students at a certain
university have annual examinations in all the courses they
take. Naturally, examinations in different courses cannot be held
concurrently if the courses have students in common. How can
all the examinations be organized in as few parallel sessions as
possible? To find a schedule, consider the graph G whose vertex
set is the set of all courses, two courses being joined by an edge if
they give rise to a conflict. Clearly, independent sets of G
correspond to conflict-free groups of courses. Thus, the required
minimum number of parallel sessions is the chromatic number of
G.
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Some motivation

Example. (chemical storage). A company manufactures n
chemicals C1,C2, . . . ,Cn. Certain pairs of these chemicals are
incompatible and would cause explosions if brought into contact
with each other. As a precautionary measure, the company
wishes to divide its warehouse into compartments, and store
incompatible chemicals in different compartments. What is the
least number of compartments into which the warehouse should
be partitioned? We obtain a graph G on the vertex set
{v1,v2, . . . ,vn} by joining two vertices vi and vj if and only if the
chemicals Ci and Cj are incompatible. It is easy to see that the
least number of compartments into which the warehouse should
be partitioned is equal to the chromatic number of G.
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Simple bounds on the chromatic number

Claim
If H is a subgraph of G then χ(H)≤ χ(G).

Proof.
Note that a proper colouring of G is also a proper colouring of
H.
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Simple bounds on the chromatic number

Claim
χ(G)≥ω(G).

Proof.
Let ω(G)= t. Then G contains a subgraph H which is isomorphic
to Kt. Thus, by the claim above it follows that χ(G)≥ χ(H)= t.
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Example

Consider the following graph.

In this case we have χ(G)= 4 and ω(G)= 3. Thus, the chromatic
number can be bigger than the clique number.
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Simple bounds on the chromatic number

Proposition

χ(G)≥ |V(G)|
α(G)

.

Proof.
Let χ(G)= k. A k-colouring of V(G) gives a partition
V(G)=V1 ∪ . . .∪Vk such that every Vi is an independent set.
Hence, |Vi| ≤α(G). Therefore, |V(G)| =∑k

i=1 |Vi| ≤ kα(G). Thus,

k= χ(G)≥ |V(G)|
α(G)

as claimed.
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Simple bounds on the chromatic number

Claim
For any graph G= (V,E) and any U ⊆V we have
χ(G)≤ χ(G[U])+χ(G[V \U]).

Proof.
Properly colour U using χ(G[U]) colours and properly colour
V \U using χ(G[V \U]) other colours. This gives a proper
colouring of G in χ(G[U])+χ(G[V \U]) colours.
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Simple bounds on the chromatic number

Claim
For any graphs G1 and G2 on the same vertex set,
χ(G1 ∪G2)≤ χ(G1)χ(G2).

Proof.
Let c1 and c2 be colourings of G1 and G2 with the integers in
[χ(G1)] and [χ(G2)] respectively. We colour the vertices of G1 ∪G2

with elements of the set [χ(G1)]× [χ(G2)], with the colouring c
defined by c(v)= (c1(v),c2(v)). If v is adjacent to w in G1 ∪G2 then
(v,w) is an edge in one of G1 or G2, so c1(v) 6= c1(w) or
c2(v) 6= c2(w). This proves that c(v) 6= c(w), so c is proper.

Yanbo ZHANG Lecture 14. Graph colouring I



Simple bounds on the chromatic number

Proposition

(i) χ(G)χ(G)≥ |G|.

Proof.
(i) follows from the last claim: we have
χ(G)χ(G)≥ χ(G∪G)= χ(K|G|)= |G|.
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Simple bounds on the chromatic number

Proposition

(ii) χ(G)+χ(G)≤ |G|+1.

Proof.
(ii) can be proved by induction on |G| (the case |G| = 1 is obvious).
So, let |G| = n+1. Let G0 =G\v for some vertex v. By induction
we have χ(G0)+χ(G0)≤ n+1. Let c : V → [k] be a colouring of G0

and f : V → [`] be a colouring of G0, with k+`= n+1 (we might
be using more colours than are necessary).
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Simple bounds on the chromatic number

Proof.
If dG(v)< k then there is a colour cv such that v has no
neighbours coloured cv. We can then colour v with cv to extend c
to a colouring of G with k colours. This would prove χ(G)≤ k, and
since χ(G)= χ(G0 ∪ {v})≤ `+1 we have
χ(G)+χ(G)≤ k+`+1≤ n+2. Otherwise dG(v)≥ k so
dG(v)≤ n−k= `−1. We can then use exactly the same reasoning
as before to extend f to a colouring of G with ` colours, and since
χ(G)≤ k+1 we are done again.
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Greedy colouring

Definition
The greedy colouring with respect to a vertex ordering v1, . . . ,vn

of V(G) is obtained by colouring vertices in the order v1, . . . ,vn,
assigning to vi the smallest-indexed colour not already used on
its lower-indexed neighbours.
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Example

This graph has chromatic number 2 but the greedy colouring
needs 3 colours.
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k-degenerate

Definition
Let G= (V,E) be a graph. We say that G is k-degenerate if every
subgraph of G has a vertex of degree less than or equal to k.

Figure: 3-degenerate graph
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k-degenerate

Proposition
G is k-degenerate if and only if there is an ordering v1, . . . ,vn of
the vertices of G such that each vi has at most k neighbours
among the vertices v1, . . . ,vi−1.

Proof.
If there is such an ordering, then for any subgraph H, consider
the maximum vertex of H with respect to the ordering. This
vertex has at most k neighbours in H, thus proving that G is
k-degenerate.
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k-degenerate

Proof.
Conversely, suppose G is k-degenerate. We prove the existence of
a suitable ordering by induction on the number of vertices. If G is
k-degenerate it has a vertex of degree at most k. Call this vertex
vn. Let G′ =G\vn and note that G′ is still k-degenerate. Thus,
there exists an ordering v1, . . . ,vn−1 of the vertices of G′ satisfying
the assertion of the proposition for G′. Then the ordering
v1, . . . ,vn satisfies the required conditions for G.
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k-degenerate

Definition
Define dg(G) to be the minimum k such that G is k-degenerate.

Remark. δ(G)≤ dg(G)≤∆(G).
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k-degenerate

Theorem
χ(G)≤ 1+dg(G).

Proof.
Let k= dg(G). Fix an ordering v1, . . . ,vn of V(G) such that each vi

has at most k neighbours among v1, . . . ,vi−1. Use the greedy
colouring on G with respect to this vertex ordering. This
colouring uses at most k+1 colours, because when one colours vi

there are at most k colours which cannot be used.
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k-degenerate

Corollary
χ(G)≤∆(G)+1.

Note that dg(G) can be much smaller than ∆(G) , for example if
G=K3,n−3 we have dg(G)= 3 but ∆(G)= n−3.
Remark. This bound is tight if G=Kn or if G is an odd cycle.
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Brooks’ theorem

For any simple graph G, the chromatic number χ(G)≤∆(G)+1.

Theorem (Brooks 1941)

If G is a connected graph other than a clique or an odd cycle, then
χ(G)≤∆(G).

If G is a clique or an odd cycle, then χ(G)=∆(G)+1.
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Brooks’ theorem

We will present a recent new proof due to Mariusz Zaja̧c which
apart from being self contained and simpler than previous proofs
has the advantage of being easily converted into an algorithm.
The idea of the proof is to use induction on the number of
vertices, however property of being connected is not very
amenable to such arguments. The key idea of this proof is to
show a slightly stronger result, which replaces the connectedness
condition with that of not having a clique of certain size as a
subgraph.

Theorem (Zaja̧c’s result 2018)

Let k≥ 3 be a natural number. Let G be a graph with 4(G)≤ k. If
G does not contain a clique on k+1 vertices, then G is k-colorable.
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Brooks’ theorem

Theorem (Brooks 1941)

If G is a connected graph other than a clique or an odd cycle, then
χ(G)≤∆(G).

Proof.
If ∆(G)= 1 the graph can only be a single edge, which is a clique.
If ∆(G)= 2 the graph is a union of disjoint paths and cycles and
since it is connected it is a path or a cycle. For paths and even
cycles by colouring vertices alternately it is easy to see they are
2-colourable. Let now k=∆(G)≥ 3, the above theorem implies
that G can be k-coloured unless it contains Kk+1 as a subgraph.
But since ∆(G)= k this clique can send no edges to the rest of the
graph, so since G is connected G=Kk+1.
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Zaja̧c’s result

Theorem (Zaja̧c’s result 2018)

Let k≥ 3 be a natural number. Let G be a graph with 4(G)≤ k. If
G does not contain a clique on k+1 vertices, then G is k-colorable.

Proof.
We will make use of the following easy observation. Suppose that
G is partially coloured using at most k colours. Let P= v1v2 . . .vj

be a path in G, and assume that the vertices of P are uncoloured.
Then we may colour all vertices from v1 up to vj−1 consecutively
along P, since at the moment of colouring the vertex vi its
neighbour vi+1 is yet uncoloured, so vi has at most k−1 coloured
neighbours. We denote this sequential colouring procedure by
PATHCOLOUR (v1,v2, . . . ,vj−1;vj).
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Zaja̧c’s result

Proof.
Note that after its execution the last vertex vj of the path P
remains uncoloured, in particular PATHCOLOUR does nothing if
j= 1.
The proof now proceeds by induction on the number n of vertices
of G. For n≤ k the assertion holds trivially. We may further
assume that G is k-regular, since otherwise we would delete a
vertex of degree strictly less than k and apply induction. Let v be
any vertex of G. Since G does not contain a clique on k+1
vertices, there exist two neighbours x,y of v that are not adjacent
in G. Denote v1 = x,v2 = v, and v3 = y. Let P= v1v2v3 . . .vr be a
path starting with these three vertices and extending itself
maximally, i.e. until some vertex vr whose all neighbours are
already on P.
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Zaja̧c’s result

Proof.
Case 1. Suppose first that r= n, which means that P contains all
vertices of G, and let vj be any neighbour of v2 other than v1 and
v3 (it exists since k≥ 3). We start by giving the vertices v1 and v3

the same colour. Then apply procedures PATHCOLOUR

(v4,v5, . . . ,vj−1;vj) and PATHCOLOUR (vn,vn−1, . . . ,vj;v2). Finally,
colour the vertex v2, which is possible because it has two
neighbours in the same colour. The entire graph G is now
k-coloured.

We will present a recent new proof due to Mariusz Zając which apart from being self contained and
simpler than previous proofs has the advantage of being easily converted into an algorithm. The
idea of the proof is to use induction on the number of vertices, however property of being connected
is not very amenable to such arguments. The key idea of this proof is to show a slightly stronger
result, which replaces the connectedness condition with that of not having a clique of certain size as
a subgraph.

Theorem 7.23. Let k ≥ 3 be a natural number. Let G be a graph with ∆(G) ≤ k. If G does not
contain a clique on k + 1 vertices, then G is k-colorable.

Proof. We will make use of the following easy observation. Suppose that G is partially coloured
using at most k colours. Let P = v1v2 . . . vj be a path in G, and assume that the vertices of P are
uncoloured. Then we may colour all vertices from v1 up to vj−1 consecutively along P , since at the
moment of colouring the vertex vi its neighbour vi+1 is yet uncoloured, so vi has at most k−1 coloured
neighbours. We denote this sequential colouring procedure by PathColour(v1, v2, . . . , vj−1; vj).
Note that after its execution the last vertex vj of the path P remains uncoloured, in particular
PathColour does nothing if j = 1.

The proof now proceeds by induction on the number n of vertices of G. For n ≤ k the assertion holds
trivially. We may further assume that G is k-regular, since otherwise we would delete a vertex of
degree strictly less than k and apply induction. Let v be any vertex of G. Since G does not contain
a clique on k + 1 vertices, there exist two neighbours x, y of v that are not adjacent in G. Denote
v1 = x, v2 = v, and v3 = y. Let P = v1v2v3 . . . vr be a path starting with these three vertices and
extending itself maximally, i.e. until some vertex vr whose all neighbours are already on P .

Case 1. Suppose first that r = n, which means that P contains all vertices of G, and let vj be
any neighbor of v2 other than v1 and v3 (it exists since k ≥ 3). We start by giving the ver-
tices v1 and v3 the same colour. Then apply procedures Pathcolour(v4, v5, . . . , vj−1; vj) and
Pathcolour(vn, vn−1, . . . , vj ; v2). Finally, colour the vertex v2, which is possible because it has
two neighbours in the same colour. The entire graph G is now k-coloured.

· · · · · ·v1 v2 v3 v4 vj−1 vj vj+1 vn−1 vn

: Pathcolour(v4, v5, . . . , vj−1; vj)

: Pathcolour(vn, vn−1, . . . , vj ; v2)

· · · · · ·

Case 2. Assume now that r < n. Recall that all neighbours of vr are on the path P . Let vj be the
neighbor of vr with the smallest index. So, C = vjvj+1 . . . vr is a cycle in G. Consider the subgraph
G′ = G−C obtained by deleting all vertices of C. We first, colour G′ using k colours by the induction
hypothesis. If there is no edge between G′ and C, then we are done by applying induction also to the
subgraph induced by C. If, on the contrary, there is a vertex on C with a neighbor in G′, then let
v` be such vertex with the largest index, and let u be any of its neighbours in G′. Notice that ` < r
because vr has all of its neighbours on C. Since the vertex v`+1 does not have neighbours in G′, we
may assign it the same colour as u. Now apply procedure Pathcolour(v`+2, . . . , vr, vj , . . . , v`−1; v`)
and finally colour v`, which is possible as it has two neighbours in the same colour. As previously,
the entire graph G is coloured and the proof is complete.
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Zaja̧c’s result

Proof.
Case 2. Assume now that r< n. Recall that all neighbours of vr

are on the path P. Let vj be the neighbour of vr with the smallest
index. So, C= vjvj+1 . . .vr is a cycle in G. Consider the subgraph
G′ =G−C obtained by deleting all vertices of C. We first, colour
G′ using k colours by the induction hypothesis. If there is no edge
between G′ and C, then we are done by applying induction also to
the subgraph induced by C.
If, on the contrary, there is a vertex on C with a neighbour in G′,
then let v` be such vertex with the largest index, and let u be any
of its neighbours in G′.
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Zaja̧c’s result

Proof.
Notice that `< r because vr has all of its neighbours on C. Since the

vertex v`+1 does not have neighbours in G′, we may assign it the same

colour as u. Now apply procedure PATHCOLOUR

(v`+2, . . . ,vr,vj, . . . ,v`−1;v`) and finally colour v`, which is possible as it

has two neighbours in the same colour. As previously, the entire graph

G is coloured and the proof is complete.

· · · · · ·

coloured by induction

C

G′

vj vj+1

u

v`−1

v`

v`+1 v`+2 vr−1 vr

: Pathcolour(v`+2, . . . , vr, vj , . . . , v`−1; v`)

· · · · · ·

Proof of Theorem 7.22. If ∆(G) = 1 the graph can only be a single edge, which is a clique. If ∆ = 2
the graph is a union of disjoint paths and cycles and since it is connected it is a path or a cycle. For
paths and even cycles by colouring vertices alternately it is easy to see they are 2-colourable. Let
now k = ∆(G) ≥ 3, the above theorem implies that G can be k-coloured unless it contains Kk+1 as
a subgraph. But since ∆(G) = k this clique can send no edges to the rest of the graph, so since G
is connected G = Kk+1.

7.5 Colouring planar graphs

Claim 7.24. A (simple) planar graph G contains a vertex v of degree at most 5.

Proof. Recall that in a planar graph |E(G)| ≤ 3|V | − 6. Thus, we have that
∑

v∈V (G) d(v) ≤
6|V | − 12 < 6|V | and so the claim follows.

Corollary 7.25. A planar graph G is 5-degenerate and thus 6-colourable.

Theorem 7.26 (5 colour theorem; Heawood 1890). Every planar graph G is 5-colourable.

Proof. By induction of |V (G)|. For |V (G)| ≤ 5 the statement is obvious. Assume |V (G)| > 5. Let v
be a vertex of degree at most 5 in G. By induction, G\v is 5-colourable. If d(v) < 5, then a colouring
of f : V (G) \ {v} → {1, . . . , 5} can be extended to V (G) by assigning f(v) ∈ {1, . . . , 5} \ {f(u) :
uv ∈ E(G)}. Hence, we may assume that d(v) = 5. Fix a planar embedding of G in which the
neighbours of v are coloured by f with the colours 1, . . . , 5 in clockwise order (if f uses less than
5 colours on N(v) then it can be extended to V (G) as before). Let the corresponding vertices be
v1, . . . , v5, i.e., f(vi) = i for i = 1, . . . , 5.

v1

v2

v3

v4

v5
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Thank you!
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