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Polytope

Definition
A polytope is a solid in 3 dimensions with flat faces, straight
edges and sharp corners. Faces of a polytope are joined at the
edges. A polytope is convex if the line connecting any two points
of the polytope lies inside the polytope.

Example.
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Platonic Solids

Definition
A regular solid or Platonic solid is a convex polytope which
satisfies the following:
1. all of its faces are congruent regular polygons,
2. all vertices have the same number of faces adjacent to them.

Example. The tetrahedron:

K3,3 K5

Proof. K5 is a non-planar graph since e = 10 > 9 = 3n − 6. K3,3 is a non-planar graph since
e = 9 > 8 = 2n− 4.

Remark 6.17 (Maximal planar graphs / triangulations). The proof of Theorem 6.14 shows that
having 3n− 6 edges in a simple n-vertex planar graph requires 2e = 3f , meaning that every face is
a triangle. If G has some face that is not a triangle, then we can add an edge between non-adjacent
vertices on the boundary of this face to obtain a larger plane graph. Hence the simple plane graphs
with 3n− 6 edges, the triangulations, and the maximal plane graphs are all the same family.

6.1 Platonic Solids

Definition 6.18. A polytope is a solid in 3 dimensions with flat faces, straight edges and sharp
corners. Faces of a polytope are joined at the edges. A polytope is convex if the line connecting any
two points of the polytope lies inside the polytope.

Example 6.19. The tetrahedron:

Definition 6.20. A regular or Platonic solid is a convex polytope which satisfies the following:

1. all of its faces are congruent regular polygons,

2. all vertices have the same number of faces adjacent to them.

We will now characterise all Platonic solids. The first step is to convert a convex polytope into a
planar graph. To do this, we place the considered polytope inside a sphere. Then we project the
polytope onto the sphere (imagine that the edges of the polytope are made from wire and we place
a tiny lamp in the center). This yields a graph drawn on the sphere without edge crossings.

Now let us show that planar graphs are exactly graphs that can be drawn on the sphere. This becomes
quite obvious if we use the stereographic projection. We place the sphere in the 3-dimensional space
in such a way that it touches the considered plane ρ. Let o denote the point of the sphere lying
farthest from ρ, the ’north pole’.
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A convex polytope −→ a planar graph 1

We will now characterise all Platonic solids. The first step is to
convert a convex polytope into a planar graph. To do this, we
place the considered polytope inside a sphere. Then we project
the polytope onto the sphere (imagine that the edges of the
polytope are made from wire and we place a tiny lamp in the
center). This yields a graph drawn on the sphere without edge
crossings.
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A convex polytope −→ a planar graph 2

Now let us show that planar graphs are exactly graphs that can
be drawn on the sphere. This becomes quite obvious if we use the
stereographic projection. We place the sphere in the
3-dimensional space in such a way that it touches the considered
plane ρ. Let o denote the point of the sphere lying farthest from
ρ, the ‘north pole’.

o

x

x′

ρ

Then the stereographic projection maps each point x 6= o of the sphere to a point x′, where x′ is
the intersection of the line ox with the plane ρ. (For the point o, the projection is undefined.) This
defines a bijection between the plane and the sphere without the point o. Given a drawing of a graph
G on the sphere without edge crossings, where the point o lies on no arc of the drawing (which we
may assume by a suitable choice of o), the stereographic projection yields a planar drawing of G.
Conversely, from a planar drawing we get a drawing on the sphere by the inverse projection.

Corollary 6.21. If K is a convex polytope with v vertices, e edges and f faces then v − e+ f = 2.

Suppose K is a Platonic solid. All its faces are congruent; assume that they have n vertices (and,
thus, n edges). Let us assume moreover that each vertex is adjacent to m faces (and, thus, it has m
edges adjacent to it). Since each edge is adjacent to exactly two faces,

2e = nf. (3)

Moreover, each edge is adjacent to two vertices, and one vertex belongs to m edges, thus

mv = 2e. (4)

Expressing v and f in terms of e, and substituting to Euler’s formula, we obtain that
2e

m
−e+

2e

n
= 2.

Rearranging, we arrive at
1

m
+

1

n
=

1

2
+

1

e
.

Note that since K is a 3-dimensional polytope, each of its faces is a polygon and thus has at least 3
vertices; that is, n ≥ 3. Moreover, at each vertex, there are at least three faces meeting; m ≥ 3. On
the other hand, since e ≥ 1, we must have

1

m
+

1

n
>

1

2
. (5)

These conditions do not leave too much leeway; there are only five possible (n,m) pairs for which
the above inequality holds. These are (3, 3), (3, 4), (3, 5), (4, 3), (5, 3).

A Platonic solid corresponds to each of these pairs. We list them below.
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A convex polytope −→ a planar graph 3

Then the stereographic projection maps each point x 6= o of the
sphere to a point x′, where x′ is the intersection of the line ox
with the plane ρ. (For the point o, the projection is undefined.)
This defines a bijection between the plane and the sphere
without the point o. Given a drawing of a graph G on the sphere
without edge crossings, where the point o lies on no arc of the
drawing (which we may assume by a suitable choice of o), the
stereographic projection yields a planar drawing of G.
Conversely, from a planar drawing we get a drawing on the
sphere by the inverse projection.
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Euler’s polyhedral formula

Corollary
If K is a convex polytope with v vertices, e edges and f faces, then
v−e+ f = 2.
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Platonic solids characterization

Suppose K is a Platonic solid. All its faces are congruent; assume
that they have n vertices (and, thus, n edges). Let us assume
moreover that each vertex is adjacent to m faces (and, thus, it
has m edges adjacent to it). Since each edge is adjacent to exactly
two faces,

2e= nf .

Moreover, each edge is adjacent to two vertices, and one vertex
belongs to m edges, thus

mv= 2e.
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Platonic solids characterization

Expressing v and f in terms of e, and substituting to Euler’s

formula, we obtain that
2e
m

−e+ 2e
n

= 2. Rearranging, we arrive at

1
m

+ 1
n
= 1

2
+ 1

e
.

Note that since K is a 3-dimensional polytope, each of its faces is
a polygon and thus has at least 3 vertices; that is, n≥ 3.
Moreover, at each vertex, there are at least three faces meeting;
m≥ 3. On the other hand, since e≥ 1, we must have

1
m

+ 1
n
> 1

2
.
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Platonic solids characterization

These conditions do not leave too much leeway.
From n≥ 3, m≥ 3, 1

m + 1
n > 1

2 we see that there are only five
possible (n, m) pairs for which the above inequality holds. These
are (3, 3) , (3, 4) , (3, 5) , (4, 3) , (5, 3).
A Platonic solid corresponds to each of these pairs. We list them
below.
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Platonic solids characterization

• Tetrahedron. Here n= 3 and m= 3. Thus, 1
m + 1

n > 1
2 yields that

e= 6. By mv= 2e, v= 4, and by 2e= nf , f = 4. There are 4 vertices
and 4 faces of the tetrahedron; the faces are regular triangles,
and the vertices are adjacent to 3 edges.
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Platonic solids characterization

• Octahedron. Here n= 3 and m= 4. Thus, 1
m + 1

n > 1
2 yields that

e= 12. By mv= 2e, v= 6, and by 2e= nf , f = 8. There are 8
vertices and 8 faces of the octahedron; the faces are regular
triangles, and the vertices are adjacent to 4 edges.
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Platonic solids characterization

• Icosahedron. Here n= 3 and m= 5. Thus, 1
m + 1

n > 1
2 yields that

e= 30. By mv= 2e, v= 12, and by 2e= nf , f = 20. There are 12
vertices and 20 faces of the icosahedron; the faces are regular
triangles, and the vertices are adjacent to 5 edges.

Yanbo ZHANG Lecture 13. Platonic Solids



Platonic solids characterization

• Cube. Here n= 4 and m= 3. Thus, 1
m + 1

n > 1
2 yields that e= 12.

By mv= 2e, v= 8, and by2e= nf , f = 6. There are 8 vertices and 6
faces of the tetrahedron; the faces are squares, and the vertices
are adjacent to 3 edges.
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Platonic solids characterization

• Dodecahedron. Here n= 5 and m= 3. Thus, 1
m + 1

n > 1
2 yields

that e= 30. By mv= 2e, v= 20, and by 2e= nf , f = 12. There are
20 vertices and 12 faces of the tetrahedron; the faces are regular
pentagons, and the vertices are adjacent to 3 edges.
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Thank you!
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