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Matching

Definition
A set of edges M ⊆E(G) in a graph G is called a matching if
e∩e′ =; for any pair of edges e,e′ ∈M.
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Perfect matching

Definition

A matching is perfect if |M| = |V(G)|
2 , i.e. it covers all vertices of G.

So in a perfect matching, every vertex of the graph is incident to

exactly one edge of the matching. A perfect matching is therefore a

matching containing n/2 edges (the largest possible), meaning perfect

matchings are only possible on graphs with an even number of vertices.
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Maximum matching

Definition
We denote the size of the maximum matching in G, by ν(G).

The following figure shows examples of maximal matchings (red)
in three graphs.

The following figure shows examples of maximum matchings
(red) in the same three graphs.
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Maximum matching

• G=Kn : ν(G)= bn
2 c;

• G=Ks,t, s≤ t : ν(G)= s;

• G is the Petersen graph : ν(G)= 5.

Yanbo ZHANG Lecture 10. Matchings 6 / 32



Remark

• A matching contains no loops;

• A matching in a graph G corresponds to an independent set
in the line graph L(G);

• If G has a perfect matching, then the order of G is even;

• If the order of G is even, G may NOT have a perfect
matching.

108 Chapter 3: Matchings and Factors

3.1.3. Example. Perfect matchings in complete graphs. Since it has odd order,
K2n+l has no perfect matching. The number In of perfect matchings in K2n is
the number of ways to pair up 2n distinct people. There are 2n - 1 choices for
the partner of V2n, and for each such choice there are In-l ways to complete
the matching. Hence In = (2n - 1)ln-l for n :> 1. With 10 = 1, it follows by
induction that In = (2n - 1) . (2n - 3) . . . (1). '

There is also a counting argument for In. From an orderingof2n people, we
form a matching by pairing the first two, the next two, and so on. Each ordering
thus yields one matching. Each matching is generated by 2 n n! orderings, since
change the order of the pairs or the order within a pair does not change the
resulting matching. Thus therp are In = (2n)!/(2 n n!) perfect matchings. .

The usual drawing of the Petersen graph shows a perfect matching and
two 5-cycles; counting the perfect matchings takes some effort (Exercise 14).
The inductive construction <?f the hypercube Qk readily yields many perfect
matchings (Exercise 16), but counting them exactly is difficult. The graphs
below have even order but no perfect matchings.

>-<

MAXIMUM MATCHINGS

A matching is a set of edges, so its size is the number of edges. We can
seek a large matching by iteratively selecting edges whose endpoint� are not
used by the edges already selected, until no more are available. This yields a
maximal matching but maybe not a maximum matching.

3.1.4. Definition. A maximal matching in a graph is a matching that cannot
be enlarged by adding an edge. A maximum matching is a matching of
maximum size among all matchings in the graph.

A matching M is maximal if every edge not in M is incident to an edge al-
ready in M. Every maximum matching is a maximal matching, but the converse
need not hold.

3.1.5. Example. Maximal =1= maximum. The smallest graph having a maximal
matching that is not a maximum matching is P4. Ifwe take the middle edge,
then we can add no other, but the two end edges form a larger matching. Below
we show this phenomenon in P4 and in P6. .
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Cover

Definition
A set of vertices T ⊆V(G) of a graph G is called a cover of G if
every edge e ∈E(G) intersects T (e∩T 6= ;), i.e., G\T is an empty
graph.

A vertex cover of a graph is a set of vertices that includes at least one

endpoint of every edge.
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Minimum cover

Definition
We denote the size of the minimum cover in G, by τ(G).

The following figure shows two examples of vertex covers
(marked in red).

The following figure shows examples of minimum covers in the
previous graphs.
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Minimum cover

• G=Kn : τ(G)= n−1;

• G=Ks,t, s≤ t : τ(G)= s;

• G is the Petersen graph : τ(G)= 6.

Note that the graphs induced by the outer 5 vertices and inner 5

vertices are both 5-cycles C5. Since τ(C5)= 3, at least 3 of the outer

vertices and 3 of the inner vertices must be included in a vertex cover.
Yanbo ZHANG Lecture 10. Matchings 10 / 32



Relation between ν(G) and τ(G)

Proposition
ν(G)≤ τ(G)≤ 2ν(G).

Proof.
Let M be a maximum matching in G. Since every cover has at least one

vertex on each edge of M and edges are disjoint, we have ν(G)≤ τ(G).

Note also that since M is maximum, every edge e ∈E(G) intersects some

edge e′ ∈M, otherwise we get a larger matching. So the vertices covered

by M form a cover for G, hence τ(G)≤ 2|M| = 2ν(G).
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Real-world applications I

Suppose certain workers can operate certain machines, but only
one at a time; this gives a bipartite graph between workers and
machines. If we want to have many machines operating at the
same time, we need a large matching in our bipartite graph.
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Real-world applications II

The molecular structure of a compound can be described by a
graph. For certain kinds of hydrocarbon molecules, a perfect
matching of this graph gives information about the location of its
“double bonds”.
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Real-world applications III

The Stable Marriage Problem
The purpose of the stable marriage problem is to facilitate
matchmaking between two sets of people. Given a list of
potential matches among an equal number of brides and grooms,
we hope everyone to be married to an agreeable match.

The Gale-Shapley algorithm for efficiently computing a stable
matching was worth the Nobel prize in economics in 2012.
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Real-world applications IV

Algorithms to find large matchings are essential subroutines for
solving optimization problems. The Chinese postman problem
involves travelling every edge at least once while as short a total
distance as possible. This problem can be efficiently solved by
first solving a set of shortest path problems, then solving a
certain matching problem.
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Hall’s theorem

Every company can hire a suitable person if and only if: for any
set of x companies, the set of applicants they choose must have a
size at least x.
Hall 1935: A bipartite graph G= (V,E) with bipartition V =A∪B
has a matching covering A if and only if |N(S)| ≥ |S| ∀S⊆A.
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Hall’s theorem

Let N(S) be the neighbourhood of S, that is,

N(S)= {v ∈V(G) | v is adjacent to some vertex in S}.

5.3 Hall’s theorem 139 

5.3 Hall’s theorem 

Before providing a solution to the problem stated at the end of Section 5.2, 
let us first introduce the following notation. 

Let G be a graph. For a set S of vertices in G, let N ( S )  denote the set 
of vertices in G which are adjacent to some vertex in S; i.e., 

N ( S )  = {v E V(G)Iu is adjacent to some vertex in S}. 

It is clear that 

N ( S )  = u N ( a ) .  
aES 

Question 5.3.1. 
shown in Figure 5.6. 

Let G be the bipartite graph with bipartition ( X ,  Y )  as 

x 

Y 

Figure 5.6 

(i) Complete the following table: 

I I I ~ 

(ii) Does there exist a complete matching f rom X to  Y ?  

Question 5.3.2. 
as shown an Figure 5.7, 

Consider the bipartite graph G with bipartition ( X ,  Y )  

N({x1})= {y1,y3}, N({x2})= {y1,y2,y4}, N({x3})= {y4},
N({x1,x2})= {y1,y2,y3,y4}, N({x1,x3})= {y1,y3,y4},
N({x2,x3})= {y1,y2,y4},
N(X)=Y.
We can find a matching covering X.
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Hall’s theorem

140 Introduction to  Gmph Theory 

Figure 5.7 

(i) Let S = {XI, x2,x4}. Find N(S). 

(ii) Is there a complete matching from X to Y in G? Why? 

We are now in a position to establish the following classic result on 
matchings in bipartite graphs due to the English algebraist Philip Hall 
(1904 - 1982) in 1935. 

Theorem 5.1 Let G be a bipartite graph with bipartition ( X , Y ) .  
Then G contains a complete matching from X to Y if and only if 
IS1 5 IN(S)l for every subset S of X .  

Proof. [Necessity] Suppose on the contrary that there exists 
S C X such that IS/ > IN(S)I. Then it is clear that there is 
no complete matching from X to Y in G. 

[Sufficiency] Assume that in G 

(#) IS1 5 IN(S)I for all S X .  

We shall show that G contains a complete matching from X to 
Y by induction on 1x1. The above statement is obviously true if 
1x1 = 1. Assume that it is true when 1x1 5 k - 1. Consider now 
that 1x1 = k, where k 2 2. 

Case (1). IS1 + 1 5 IN(S)I for all S 

Let z E X. Then there exists y E Y such that zy E E(G). 
Let G' = G - {x, y}. Clearly, G' satisfies (#) for all S C X - 
{x}. Thus, by the induction hypothesis, G' contains a complete 
matching M' from X - {z} to Y - {y}. It follows that M'U (xy} 
is a complete matching from X to Y .  

X and S # 0. 

Let S= {x1,x2,x4}. Then N(S)= {y2,y5}, |N(S)| < |S|.
We can not find a matching covering X.
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Hall’s theorem

Theorem (Hall 1935)

A bipartite graph G= (V,E) with bipartition V =A∪B has a
matching covering A if and only if

|N(S)| ≥ |S| ∀S⊆A (1)

Proof.
It is easy to see that if G has such a matching then (1) holds.
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Hall’s theorem

Theorem (Hall 1935)

A bipartite graph G= (V,E) with bipartition V =A∪B has a
matching covering A if and only if

|N(S)| ≥ |S| ∀S⊆A (1)

Proof.
To show the other direction, we apply induction on |A|. For |A| = 1
the assertion is true. Now let |A| ≥ 2, and assume that (1) is
sufficient for the existence of a matching covering A when |A| is
smaller.
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Hall’s theorem

Proof.
If |N(S)| ≥ |S|+1 for every non-empty set S⊂A, then we pick an
edge (a,b) ∈G and consider the graph G′ =G\{a,b} obtained by
deleting the vertices a and b. Then every non-empty set
S⊆A\{a} satisfies

|NG′(S)| ≥ |NG(S)|−1≥ |S|,

so by the induction hypothesis G′ contains a matching covering
A\{a}. Together with the edge ab, this yields a matching
covering A in G.
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Hall’s theorem

Proof.
Suppose now that A has a non-empty proper subset A′ with
neighbourhood B′ =N(A′) such that |A′| = |B′|. By the induction
hypothesis, G′ =G[A′∪B′] contains a matching covering A′. But
G\G′ satisfies (1) as well. If not, for any set S⊆A\A′ with
|NG\G′(S)| < |S| we would have
|NG(S∪A′)| = |NG\G′(S)|+ |B′| < |S∪A′|, contrary to our
assumption. Again, by induction, G\G′ contains a matching of
A\A′. Putting the two matchings together, we obtain a matching
in G covering A.
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Defect version of Hall’s theorem

Corollary
If in a bipartite graph G= (A∪B,E) we have |N(S)| ≥ |S|−d for
every set S⊆A and some fixed d ∈N, then G contains a matching
of cardinality |A|−d.
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Defect version of Hall’s theorem

Corollary
If in a bipartite graph G= (A∪B,E) we have |N(S)| ≥ |S|−d for
every set S⊆A and some fixed d ∈N, then G contains a matching
of cardinality |A|−d.

Proof.
We add d new vertices to B, joining each of them to all the
vertices in A. Call the resulting graph G′. Note that the new
graph has

|NG′(S)| ≥ |NG(S)|+d≥ |S|−d+d= |S|,

for any S⊆A, so by Hall’s theorem, G′ contains a matching of A.
At least |A|−d edges in this matching must be edges of G.
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Regular bipartite graph

Corollary
If a bipartite graph G= (A∪B,E) is k-regular with k≥ 1, then G
has a perfect matching.142 Introduction to  Graph Theory 

x 

Y 

Figure 5.8 

Indeed, every 3-regular bipartite graph always contains a perfect match- 

Let us now argue why this is the case. 
Let G be a 3-regular bipartite graph with bipartition ( X ,  Y ) .  
We shall apply Theorem 5.1, and our target is to show that 

ing. 

IS1 I: IN(S)l 
for any subset S of X .  

Let S C_ X be given. 
Firstly, we ask: (1) How many edges in G are incident with some vertex 

Since G is 3-regular, the answer is 31SI. 
Next, we ask: (2) How many edges in G are incident with some vertex 

Again, by  the same reason, the answer is 31N(S)I. 
Since an edge incident with a vertex in S must be incident with a vertex 

in N ( S ) ,  any edge counted in (1 )  must be counted in (2). Thus, we have 
(see Problem 5 of Exercise 5.3): 

that is, IS1 I IN(S)I, as required. 

in S? 

in N ( S ) ?  

3 1 ~ 1  I 3 1 ~ ~ 1 1 ,  

Thus, b y  Theorem 5.1, G contains a complete matching from X to Y .  
Since G is a regular bipartite graph with bipartition ( X , Y ) ,  we must 

have 1x1 = IYI (see Problem 4 of Exercise 3.1). We therefore conclude 
that the above complete matching from X to Y is a perfect matching. This 
completes the proof. 

In general, we have (see Problem 6 of Exercise 5.3): 

Corollary 5.3 Every k-regular bipartite graph, where k 2 1, al- 
0 ways contains a perfect matching. 
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Regular bipartite graph

Corollary
If a bipartite graph G= (A∪B,E) is k-regular with k≥ 1, then G
has a perfect matching.

Proof.
If G is k-regular, then clearly |A| = |B|, since the total number of
edges is k|A| =∑

x∈A d(x)=∑
y∈B d(y)= k|B|. It thus suffices to

show by Hall’s Theorem that G contains a matching covering A.
Now every set S⊆A is joined to N(S) by a total of k|S| edges, and
these are among the k|N(S)| edges of G incident with N(S).
Therefore k|S| ≤ k|N(S)|, so G does indeed satisfy (1).
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Regular even graph

Corollary
Every regular graph of positive even degree has a 2-factor (a
spanning 2-regular subgraph).

Consider the Eulerian tour in G=K5 that successively visits
12314254351. The corresponding bipartite graph H is on the
right.

140 Chapter 3: Matchings and Factors

Petersen also proved a sufficient condition for 2-factors. A connected graph
with even vertex degrees is Eulerian (Theorem 1.2.26) and decomposes into
edge-disjoint cycles (Proposition 1.2.27). For regular graphs of even degree, the
cycles in some decomposition can be grouped to form 2-factors.

3.3.9. Theorem. (Petersen [1891]) Every regular graph of even degree has a
2- factor.

Proof: Let G be a 2k-regular graph with vertices Vl, ..., V n . Every component
of G is Eulerian, with some Eulerian circuit C. For each component, define a
bipartite graph H with vertices Ul. . .., Un and Wl, .. ., W n by putting Ui � Wj
if Vj immediately follows Vi so:::newhere on C. Because C enters and exits each
vertex k times, H is k-regular. (A...ctually, H is the split of the digraph obtained
by orienting G in accordance with C-see Definition 1.4.20.)

Being a regular bipartite graph, H has a I-factor M (Corollary 3.1.13). The
edge incident to Wi in H corresponds to an edge entering Vi in C. The edge
incident to Ui in H corresponds to an edge exiting Vi. Thus t�e I-factor in H
transforms into a 2-regular spanning subgraph of this component of G. Doing
this for each component of G yieJds a 2-factor of G. .

3.3.10. Example. Construction of a 2-factor. Consider the Eulerian circuit in
G = Ks that successively vizits 1231425435. The corresponding bipartite graph
H is on the right. For the I-factor whos� u, w-pairs are 12, 43, 25, 31, 54, the
resulting 2-factor is the cycle (1,2,5,4,3). The remaining edges form another
I-factor, which correspoilds to the 2-factor (1,4,2,3,5) that remains in G. .

1

IV WI

5 2 2 2
3 3

4 4

5 5

I-FACTORS OF GRAPHS (optional)

A factor is a spanning subgraph of G; we ask about existence of factors of
special types. A k-factor is a k-regular factor; we have studied I-factors and
2-factors. We can try to specify the degree at each vertex.

3.3,,11. Definition. Given a function f: V(G) -+ NU{Q}, an f-factor of a graph
G is a subgraph H such that dH(v) = f(v) for all V E V(G).

Tutte [1952] proved a necessary and sufficient condition for a graph G to
have an f -factor (see Exercise 29). He later reduced the problem to checking for

\
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Regular even graph

Corollary
Every regular graph of positive even degree has a 2-factor (a
spanning 2-regular subgraph).

Proof.
Let G be any connected 2k-regular graph. Then G contains an Euler

tour. Define a new graph G′ by splitting every vertex v into two vertices

v− and v+. If an edge of the Euler tour goes from v to w, put an edge in

G′ from v+ to w−. So, the edges in G and in G′ naturally correspond to

each other. It is easy to see that G′ is bipartite and k-regular so

contains a perfect matching. Collapsing each pair of vertices v−,v+

back into a single vertex v, a perfect matching of G′ corresponds to a

2-factor of G. (Each vertex v is incident to one edge which was incident

to v+ in G′, and one edge incident to v− in G′).
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System of distinct representatives

Remark. A 2-factor is a disjoint union of cycles covering all the
vertices of a graph.

Definition
Let A1, . . . ,An be a collection of sets. A family {a1, . . . ,an} is called
a system of distinct representatives (SDR) if all the ai are
distinct, and ai ∈Ai for all i.
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System of distinct representatives

Corollary
A collection A1, . . . ,An has an SDR if and only if for all I ⊆ [n] we
have |⋃i∈I Ai| ≥ |I|.

Let A1 = {x1,x2,x6}, A2 = {x2,x4}, A3 = {x1,x6}, A4 = {x2,x5},
A5 = {x4,x7}. To find an SDR of this collection, we need to
construct a bipartite graph.
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System of distinct representatives

Corollary
A collection A1, . . . ,An has an SDR if and only if for all I ⊆ [n] we
have |⋃i∈I Ai| ≥ |I|.

Proof.
Define a bipartite graph with parts A= [n] and X =⋃

i Ai such
that (i,a) is an edge if and only if a ∈Ai. A matching of [n] in this
graph corresponds exactly to an SDR, where an edge (i,a) in the
matching means that ai = a. But the condition |⋃i∈I Ai| ≥ |I| is
precisely Hall’s condition for the existence of a matching covering
A, so Hall’s theorem provides the desired equivalence.
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Thank you!
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