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Drawing without lifting your pen

Question
Which of the two pictures below can be drawn in one go without
lifting your pen from the paper?

4 Eulerian and Hamiltonian cycles

4.1 Eulerian trails and tours

Question 4.1. Which of the two pictures below can be drawn in one go without lifting your pen
from the paper?

or

Definition 4.2. A trail is a walk with no repeated edges.

Definition 4.3. An Eulerian trail in a (multi)graph G = (V,E) is a walk in G passing through
every edge exactly once. If this walk is closed (starts and ends at the same vertex) it is called an
Eulerian tour.

One motivation for this concept is the “7 bridges of Königsberg” problem:

Question 4.4. Is it possible to design a closed walk passing through all the 7 bridges exactly once?
Equivalently, does the graph on the right have an Eulerian walk?
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Theorem 4.5. A connected (multi)graph has an Eulerian tour if and only if each vertex has even
degree.

In order to prove this theorem we use the following lemma.

Lemma 4.6. Every maximal trail in an even graph (i.e., a graph where all the vertices have even
degree) is a closed trail.

Proof. Let T be a maximal trail. If T is not closed, then T has an odd number of edges incident to
the final vertex v. However, as v has even degree, there is an edge incident to v that is not in T .
This edge can be used to extend T to a longer trail, contradicting the maximality of T .

24
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Eulerian trail and Eulerian tour

Recall that a walk in G is a sequence of vertices v0, v1, v2, ..., vk,
and a sequence of edges (vi,vi+1) ∈E(G). A path is a walk with no
repeated vertices.

Definition
A trail is a walk with no repeated edges.

A path must be a trail; a trail must be a walk.

Definition
An Eulerian trail in a (multi)graph G= (V,E) is a walk in G
passing through every edge exactly once. If this walk is closed
(starts and ends at the same vertex) it is called an Eulerian tour.
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Eulerian trail and Eulerian tour

A walk: 123523456 Both vertices and edges can be repeated.
A trail: 1253456 Edges can not be repeated.
A path: 125346 Neither vertices nor edges can be repeated.
This graph has no Eulerian trail and no Eulerian tour.
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Eulerian trail and Eulerian tour

We can find an Eulerian trail: CABDCB.

We can find an Eulerian tour: AECABCFEDA, which is also an
Eulerian trail.
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Seven bridges of Königsberg

Question
Is it possible to design a closed walk passing through all the 7
bridges exactly once? Equivalently, does the graph below have an
Eulerian walk?

4 Eulerian and Hamiltonian cycles

4.1 Eulerian trails and tours

Question 4.1. Which of the two pictures below can be drawn in one go without lifting your pen
from the paper?

or

Definition 4.2. A trail is a walk with no repeated edges.

Definition 4.3. An Eulerian trail in a (multi)graph G = (V,E) is a walk in G passing through
every edge exactly once. If this walk is closed (starts and ends at the same vertex) it is called an
Eulerian tour.

One motivation for this concept is the “7 bridges of Königsberg” problem:

Question 4.4. Is it possible to design a closed walk passing through all the 7 bridges exactly once?
Equivalently, does the graph on the right have an Eulerian walk?
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Theorem 4.5. A connected (multi)graph has an Eulerian tour if and only if each vertex has even
degree.

In order to prove this theorem we use the following lemma.

Lemma 4.6. Every maximal trail in an even graph (i.e., a graph where all the vertices have even
degree) is a closed trail.

Proof. Let T be a maximal trail. If T is not closed, then T has an odd number of edges incident to
the final vertex v. However, as v has even degree, there is an edge incident to v that is not in T .
This edge can be used to extend T to a longer trail, contradicting the maximality of T .
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Necessary and sufficient condition of an Eulerian tour

Theorem
A connected (multi)graph has an Eulerian tour if and only if each
vertex has even degree.

In order to prove this theorem we use the following lemma.

Lemma
Every maximal trail in an even graph (i.e., a graph where all the
vertices have even degree) is a closed trail.

Proof.
Let T be a maximal trail. If T is not closed, then T has an odd
number of edges incident to the final vertex v. However, as v has
even degree, there is an edge incident to v that is not in T. This
edge can be used to extend T to a longer trail, contradicting the
maximality of T.
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Necessary and sufficient condition of an Eulerian tour

Theorem
A connected (multi)graph has an Eulerian tour if and only if each
vertex has even degree.

Proof.
To see that the condition is necessary, suppose G has an Eulerian
tour C. If a vertex v was visited k times in the tour C, then each
visit used 2 edges incident to v (one incoming edge and one
outgoing edge). Thus, d(v)= 2k, which is even.
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Necessary and sufficient condition of an Eulerian tour

Theorem
A connected (multi)graph has an Eulerian tour if and only if each
vertex has even degree.

Proof.
To see that the condition is sufficient, let G be a connected graph
with even degrees. Let T = e1e2 . . .e` (where ei = (vi−1,vi)) be a
longest trail in G. Then, by the last lemma, T is closed, i.e.,
v0 = v`. If T does not include all the edges of G then, since G is
connected, there is an edge e outside of T such that e= (u,vi) for
some vertex vi in T. But then T′ = eei+1 . . .e`e1e2 . . .ei is a trail in
G which is longer than T, contradicting the fact that T is a
longest trail in G. Thus, we conclude that T includes all the
edges of G and so it is an Eulerian tour.
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Necessary and sufficient condition of an Eulerian trail

Corollary
A connected multigraph G has an Eulerian trail if and only if it
has either 0 or 2 vertices of odd degree.

Proof.
Suppose T is an Eulerian trail from vertex u to vertex v. If u= v
then T is an Eulerian tour and so it follows from the theorem
that all the vertices in G have even degree. If u 6= v, note that the
multigraph G∪ {e}, where e= (u,v) is a new edge, has an Eulerian
tour, namely T∪ {e}. It follows from the theorem that all the
degrees in G∪ {e} are even. Thus, we conclude that, in the
original multigraph G, the vertices u,v are the only ones which
have odd degree.
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Necessary and sufficient condition of an Eulerian trail

Corollary
A connected multigraph G has an Eulerian trail if and only if it
has either 0 or 2 vertices of odd degree.

Proof.
Now we prove the other direction of the corollary. If G has no
vertices of odd degree then from the theorem it contains an
Eulerian tour which is also an Eulerian trail. Suppose now that
G has 2 vertices u,v of odd degree. Then G∪ {e}, where e= (u,v) is
a new edge, only has vertices of even degree and so, by the last
theorem, it has an Eulerian tour C. Removing the edge e from C
gives an Eulerian trail of G from u to v.
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Eulerian trail and Eulerian tour in multigraphs
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Hamilton paths and cycles

Definition
A Hamilton path/cycle in a graph G is a path/cycle visiting every
vertex of G exactly once. A graph G is called Hamiltonian if it
contains a Hamilton cycle.

Hamilton cycles were introduced by Kirkman in 1856, and were
named after Sir William Hamilton, who produced a puzzle whose
goal was to find a Hamilton cycle in a specific graph.
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The Icosian Game

286 Chapter 7: Edges and Cycles 

7.1.39. (*)A Krausz decomposition of a simple graph H is a partition of E(H) into 
cliques such that each vertex of H appears in at most two of the cliques. 

a) Prove that for a connected simple graph H, two Krausz decompositions of H that 
have a common clique are identical. 

b) Find distinct Krausz decompositions for the graphs in Exercise 7.1.38. 
c) Prove that no other connected simple graph except K3 has two distinct Krausz 

decompositions (use Exercise 7.1.38 and the proof of Theorem 7.1.17). 
d) Conclude that K1,3, K3 is the only pair of nonisomorphic connectt:d simple graphs 

with "isomorphic line graphs. (Whitney [1932a]) 

7.1.40. (*)Complete the proof of Theorem 7.1.18 by proving that a simple graph with 
no induced claw has a double triangle with both triangles odd if and only if it containj'l 
an induced subgraph among the other eight graphs listed in the theorem statement. 

7.2. Hamiltonian Cycles 

Studied first by Kirkman [1856], Hamiltonian cycles are named for Sir 
William Hamilton, who described a game on the graph of the dodecahedron in 
which one player specifies a 5-vertex path and the other must extend it to a 
spanning cycle. The game was marketed as the "Traveller's Dodecahedron", a 
wooden version in which the vertices were named for 20 important cities. 

7.2.1. Definition. A Hamiltonian graph is a graph with a spanning cycle, 
also called a Hamiltonian cycle. 

Until the 1970s, interest in Hamiltonian cycles centered on their relation­
ship to the Four Color Problem (Section 7.3). Later study was stimulated' by 
practical applications and by the issue of complexity (Appendix B). 

No easily testable characterization is known for Hamiltonian graphs; we 
will study necessary conditions and sufficient conditions. Loops and multiple 
edges are irrelevant; a graph is Hallliltonian if and only if the simple graph 
obtained by keeping one copy of each non-loop edge is Hamiltonian. Therefore, 
in this section we restrict our attention to simple graphs; this is relevant 
when discussing conditions involving vertex degrees. 

For further material on Hamiltonian cycles, see Chvatal [1985a]. 
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Hamilton cycle in a 3-dimensional cube

Example
Hamilton cycle in the skeleton of the 3-dimensional cube.

Proof of Theorem 4.5. To see that the condition is necessary, suppose G has an Eulerian tour C. If
a vertex v was visited k times in the tour C, then each visit used 2 edges incident to v (one incoming
edge and one outgoing edge). Thus, d(v) = 2k, which is even.

To see that the condition is sufficient, let G be a connected graph with even degrees. Let T =
e1e2 . . . e` (where ei = (vi−1, vi)) be a longest trail in G. Then, by Lemma 4.6, T is closed, i.e.,
v0 = v`. If T does not include all the edges of G then, since G is connected, there is an edge e
outside of T such that e = (u, vi) for some vertex vi in T . But then T ′ = eei+1 . . . e`e1e2 . . . ei is a
trail in G which is longer than T , contradicting the fact that T is a longest trail in G. Thus, we
conclude that T includes all the edges of G and so it is an Eulerian tour.

Corollary 4.7. A connected multigraph G has an Eulerian trail if and only if it has either 0 or 2
vertices of odd degree.

Proof. Suppose T is an Eulerian trail from vertex u to vertex v. If u = v then T is an Eulerian
tour and so by Theorem 4.5 it follows that all the vertices in G have even degree. If u 6= v, note
that the multigraph G ∪ {e}, where e = (u, v) is a new edge, has an Eulerian tour, namely T ∪ {e}.
By Theorem 4.5 it follows that all the degrees in G ∪ {e} are even. Thus, we conclude that, in the
original multigraph G, the vertices u, v are the only ones which have odd degree.

Now we prove the other direction of the corollary. If G has no vertices of odd degree then by
Theorem 4.5 it contains an Eulerian tour which is also an Eulerian trail. Suppose now that G has 2
vertices u, v of odd degree. Then G ∪ {e}, where e = (u, v) is a new edge, only has vertices of even
degree and so, by Theorem 4.5, it has an Eulerian tour C. Removing the edge e from C gives an
Eulerian trail of G from u to v.

4.2 Hamilton paths and cycles

Definition 4.8. A Hamilton path/cycle in a graph G is a path/cycle visiting every vertex of G
exactly once. A graph G is called Hamiltonian if it contains a Hamilton cycle.

Hamilton cycles were introduced by Kirkman in 1985, and were named after Sir William Hamilton,
who produced a puzzle whose goal was to find a Hamilton cycle in a specific graph.

Example 4.9. Hamilton cycle in the skeleton of the 3-dimensional cube.

We give some necessary conditions for Hamiltonicity.

Proposition 4.10. If G is Hamiltonian then for any set S ⊆ V the graph G\S has at most |S|
connected components.

25
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Necessary conditions for Hamiltonicity

Every Hamiltonian graph is 2-connected.

Proposition
If G is Hamiltonian then for any set S⊆V the graph G\S has at
most |S| connected components.

Proof. Let C1, . . . , Ck be the components of G\S. Imagine that we are moving along a Hamilton
cycle in some order, vertex-by-vertex (in the picture below, we are moving clockwise, starting from
some vertex in C1, say). We must visit each component of G\S at least once; when we leave Ci for
the first time, let vi be the subsequent vertex visited (which must be in S). Each vi must be distinct
because a cycle cannot intersect itself. Hence, S must have at least as many vertices as the number
of connected components of G\S.

S

C3

C2

C4

C1 v1

v3

v4 v2

Corollary 4.11. If a connected bipartite graph G = (V,E) with bipartition V = A∪B is Hamiltonian
then |A| = |B|.

Proof. By deleting the vertices in A from G we get |B| isolated vertices and so G\A has |B| connected
components. Thus, by Proposition 4.10 we conclude that |A| ≥ |B|. By symmetry we can also show
that |B| ≥ |A|. Thus, we conclude that |A| = |B|.

Example 4.12. The condition in Proposition 4.10 is not sufficient to ensure that a graph is Hamil-
tonian. The graph G on the right satisfies the condition of Proposition 4.10 but is not Hamiltonian.
Indeed, one would need to include all the edges incident to the vertices v1, v2 and v3 in a Hamilton
cycle of G; however, in that case the vertex u would have degree at least 3 in that Hamilton cycle,
which is impossible.

v1

v2

v3

u

We also give some sufficient conditions for Hamiltonicity.

Theorem 4.13 (Dirac 1952). If G is a simple graph with n ≥ 3 vertices and if δ(G) ≥ n/2, then G
is Hamiltonian.

Example 4.14. (best-possible minimum degree bound):

26
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Necessary conditions for Hamiltonicity

Proposition
If G is Hamiltonian then for any set S⊆V the graph G\S has at
most |S| connected components.

Proof.
Let C1, . . . ,Ck be the components of G\S. Imagine that we are
moving along a Hamilton cycle in some order, vertex-by-vertex
(we are moving clockwise, starting from some vertex in C1, say).
We must visit each component of G\S at least once; when we
leave Ci for the first time, let vi be the subsequent vertex visited
(which must be in S). Each vi must be distinct because a cycle
cannot intersect itself. Hence, S must have at least as many
vertices as the number of connected components of G\S.
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Necessary conditions for Hamiltonicity

Proposition
If G is Hamiltonian then for any set S⊆V the graph G\S has at
most |S| connected components.

Section 7.2: Hamiltonian Cycles 287 

NECESSARY CONDITIONS 

Every Hamiltonian graph is 2-connected, because deleting a vertex leaves 
a subgraph with a spanning path. Bipartite graphs suggest a way to strengthen 
this necessary condition. 

7.2.2. Example. Bipartite graphs. A spanning cycle in a bipartite graph visits 
the two partite sets alternately, so there can be no such cycle unless the partite 
sets have the same size. Hence Km.n is Hamiltonian only if m = n. Alternatively, 
we can argue that the cycle returns to different vertices of one partite set after 
each visit to the other partite set. • 

7.2.3. Proposition. If G has a Hamiltonian cycle, then for each nonempty set 
S � V, the graph G- S has at most lSI components. 

Proof: When leaving a component of G- S, a Hamiltonian cycle can go only to 
S, and the arrivals in S must use distinct vertices of S. Hence S must have at 
least as many vertices as G- S has components. • 

7.2.4. Definition. Let c(H) denote the number of components of a graph H. 

Thus the necessary condition is that c(G- S) :=:: lSI for all0 =j:. S � V. This 
condition guarantees that G is 2-connected (deleting one vertex leaves at most 
one component), but it does not guarantee a Hamiltonian cycle. 

7.2.5. Example. The graph on t:l\e left below is bipartite with partite sets of 
equal size. However, it fails the ne<¥l!1sary condition of Proposition 7 .2.3. Hence 
it is not Hamiltonian. 

The graph on the right shows that the necessary condition is not sufficient. 
This graph satisfies the condition but has no spanning cycle. All edges incident 
to vertices of degree 2 must be used, but in this graph that requires three edges 
iJ).cident to the central vertex. 

From the Proposition we see that this graph is not Hamiltonian.
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Necessary conditions for Hamiltonicity

Corollary
If a connected bipartite graph G= (V,E) with bipartition
V =A∪B is Hamiltonian then |A| = |B|.

Proof.
By deleting the vertices in A from G we get |B| isolated vertices
and so G\A has |B| connected components. Thus, by Proposition
4.10 we conclude that |A| ≥ |B|. By symmetry we can also show
that |B| ≥ |A|. Thus, we conclude that |A| = |B|.
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Proposition 4.10 is not sufficient

Example
The condition in Proposition 4.10 is not sufficient to ensure that a

graph is Hamiltonian. The graph G below satisfies the condition of

Proposition 4.10 but is not Hamiltonian. Indeed, one would need to

include all the edges incident to the vertices v1, v2 and v3 in a Hamilton

cycle of G; however, in that case the vertex u would have degree at least

3 in that Hamilton cycle, which is impossible.

Proof. Let C1, . . . , Ck be the components of G\S. Imagine that we are moving along a Hamilton
cycle in some order, vertex-by-vertex (in the picture below, we are moving clockwise, starting from
some vertex in C1, say). We must visit each component of G\S at least once; when we leave Ci for
the first time, let vi be the subsequent vertex visited (which must be in S). Each vi must be distinct
because a cycle cannot intersect itself. Hence, S must have at least as many vertices as the number
of connected components of G\S.

S

C3

C2

C4

C1 v1

v3

v4 v2

Corollary 4.11. If a connected bipartite graph G = (V,E) with bipartition V = A∪B is Hamiltonian
then |A| = |B|.

Proof. By deleting the vertices in A from G we get |B| isolated vertices and so G\A has |B| connected
components. Thus, by Proposition 4.10 we conclude that |A| ≥ |B|. By symmetry we can also show
that |B| ≥ |A|. Thus, we conclude that |A| = |B|.

Example 4.12. The condition in Proposition 4.10 is not sufficient to ensure that a graph is Hamil-
tonian. The graph G on the right satisfies the condition of Proposition 4.10 but is not Hamiltonian.
Indeed, one would need to include all the edges incident to the vertices v1, v2 and v3 in a Hamilton
cycle of G; however, in that case the vertex u would have degree at least 3 in that Hamilton cycle,
which is impossible.

v1

v2

v3

u

We also give some sufficient conditions for Hamiltonicity.

Theorem 4.13 (Dirac 1952). If G is a simple graph with n ≥ 3 vertices and if δ(G) ≥ n/2, then G
is Hamiltonian.

Example 4.14. (best-possible minimum degree bound):

26
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Dirac’s theorem

Theorem (Dirac 1952)

If G is a simple graph with n≥ 3 vertices and if δ(G)≥ n/2, then G
is Hamiltonian.
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Best-possible minimum degree bound

Example
The graph consisting of two cliques of orders b(n+1)/2c and
d(n+1)/2e sharing a vertex has minimum degree b(n−1)/2c but is
not Hamiltonian (it is not even 2-connected).

• The graph consisting of two cliques of orders b(n+ 1)/2c and d(n+ 1)/2e sharing a vertex has
minimum degree b(n− 1)/2c but is not Hamiltonian (it is not even 2-connected).

Kb(n+1)/2c Kd(n+1)/2e

• If n is odd, then the complete bipartite graph K(n−1)/2,(n+1)/2 has minimum degree n−1
2 but

is not Hamiltonian.

Proof of Theorem 4.13. The condition that n ≥ 3 must be included since K2 is not Hamiltonian but
satisfies δ(K2) = |K2|/2.

If there is a non-Hamiltonian graph satisfying the hypotheses, then adding edges cannot reduce
the minimum degree, so we may restrict our attention to maximal non-Hamiltonian graphs G with
minimum degree at least n/2. By “maximal" we mean that for every pair (u, v) of non-adjacent
vertices of G, the graph obtained from G by adding the edge e = (u, v) is Hamiltonian.

The maximality of G implies that G has a Hamilton path, say from u = v1 to v = vn, because
every Hamilton cycle in G ∪ {e} must contain the new edge e. We use most of this path v1, . . . , vn,
with a small switch, to obtain a Hamilton cycle in G. If some neighbour of u immediately follows a
neighbour of v on the path, say (u, vi+1) ∈ E(G) and (v, vi) ∈ E(G), then G has the Hamilton cycle
(u, vi+1, vi+2, . . . , vn−1, v, vi, vi−1, . . . , v2) shown below.

u vi vi+1 v

To prove that such a cycle exists, we show that there is a common index in the sets S and T defined
by S = {i : (u, vi+1) ∈ E(G)} and T = {i : (v, vi) ∈ E(G)}. Summing the sizes of these sets yields

|S ∪ T |+ |S ∩ T | = |S|+ |T | = d(u) + d(v) ≥ n.

Neither S nor T contains the index n. This implies that |S ∪ T | < n, and hence |S ∩ T | ≥ 1, as
required. This is a contradiction.

Ore observed that this argument uses only that d(u) + d(v) ≥ n. Therefore, we can weaken the
requirement of minimum degree n/2 to require only that d(u)+d(v) ≥ n whenever u is not adjacent
to v.

Theorem 4.15 (Ore 1960). If G is a simple graph with n ≥ 3 vertices such that for every pair of
non-adjacent vertices u, v of G we have d(u) + d(v) ≥ |G|, then G is Hamiltonian.

27

Example
If n is odd, then the complete bipartite graph K(n−1)/2,(n+1)/2 has
minimum degree (n−1)/2 but is not Hamiltonian.
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Proof of Dirac’s theorem

Proof.
The condition that n≥ 3 must be included since K2 is not
Hamiltonian but satisfies δ(K2)= |K2|/2.
If there is a non-Hamiltonian graph satisfying the hypotheses,
then adding edges cannot reduce the minimum degree, so we
may restrict our attention to maximal non-Hamiltonian graphs
G with minimum degree at least n/2. By “maximal” we mean
that for every pair (u,v) of non-adjacent vertices of G, the graph
obtained from G by adding the edge e= (u,v) is Hamiltonian.
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Proof of Dirac’s theorem

Proof.
The maximality of G implies that G has a Hamilton path, say
from u= v1 to v= vn, because every Hamilton cycle in G∪e must
contain the new edge e. We use most of this path v1, . . . ,vn, with a
small switch, to obtain a Hamilton cycle in G. If some neighbour
of u immediately follows a neighbour of v on the path, say
(u,vi) ∈E(G) and (v,vi−1) ∈E(G), then G has the Hamilton cycle
(u,vi,vi+1, . . . ,vn−1,v,vi−1,vi−2, . . . ,v2,u) shown below.
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Proof of Dirac’s theorem

Proof.
To prove that such a cycle exists, we show that there is a common
index in the sets S and T defined by S= {i : (u,vi+1) ∈E(G)} and
T = {i : (v,vi) ∈E(G)}. Summing the sizes of these sets yields

|S∪T|+ |S∩T| = |S|+ |T| = d(u)+d(v)≥ n

Neither S nor T contains the index n. This implies that
|S∪T| < n, and hence |S∩T| ≥ 1, as required. This is a
contradiction.
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Ore’s theorem

Ore observed that this argument uses only that d(u)+d(v)≥ n.
Therefore, we can weaken the requirement of minimum degree
n/2 to require only that d(u)+d(v)≥ n whenever u is not adjacent
to v.

Theorem (Ore 1960)

If G is a simple graph with n≥ 3 vertices such that for every pair
of non-adjacent vertices u,v of G we have d(u)+d(v)≥ n, then G is
Hamiltonian.

Yanbo ZHANG Lecture 9. Eulerian and Hamiltonian cycles 27 / 29



Ore’s theorem

A graph meeting the conditions of Ore’s theorem: for every pair
of non-adjacent vertices u,v of G we have d(u)+d(v)≥ n.
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Thank you!
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