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© Dirac’s theorem
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Drawing without lifting your pen

Which of the two pictures below can be drawn in one go without

lifting your pen from the paper?

or
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Eulerian trail and Eulerian tour

Recall that a walk in (G is a sequence of vertices vg, v1, vg, ..., Ug,
and a sequence of edges (v;,v;+1) € E(G). A path is a walk with no
repeated vertices.

Definition

A trail is a walk with no repeated edges.

A path must be a trail; a trail must be a walk.

Definition

An Eulerian trail in a (multi)graph G = (V,E) is a walk in G
passing through every edge exactly once. If this walk is closed

(starts and ends at the same vertex) it is called an Eulerian tour.

Yanbo ZHANG Lecture 9. Eulerian and Hamiltonian cycles 4 /29



Eulerian trail and Eulerian tour

®

4

A walk: 123523456 Both vertices and edges can be repeated.
A trail: 1253456 Edges can not be repeated.

A path: 125346 Neither vertices nor edges can be repeated.
This graph has no Eulerian trail and no Eulerian tour.
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Eulerian trail and Eulerian tour

We can find an Eulerian trail: CABDCB.
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We can find an Eulerian tour: AECABCFEDA, which is also an

Eulerian trail.
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Seven bridges of Konigsberg

Is it possible to design a closed walk passing through all the 7
bridges exactly once? Equivalently, does the graph below have an

Eulerian walk?
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Necessary and sufficient condition of an Eulerian tour

A connected (multi)graph has an Eulerian tour if and only if each

vertex has even degree.

In order to prove this theorem we use the following lemma.

Lemma

Every maximal trail in an even graph (i.e., a graph where all the

vertices have even degree) is a closed trail.

Proof.
Let T be a maximal trail. If T is not closed, then 7" has an odd

| \

number of edges incident to the final vertex v. However, as v has
even degree, there is an edge incident to v that is not in 7. This

edge can be used to extend T to a longer trail, contradicting the

maximality of 7' L]
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Necessary and sufficient condition of an Eulerian tour

A connected (multi)graph has an Eulerian tour if and only if each

vertex has even degree.

To see that the condition is necessary, suppose G has an Eulerian

tour C. If a vertex v was visited £ times in the tour C, then each
visit used 2 edges incident to v (one incoming edge and one

outgoing edge). Thus, d(v) = 2k, which is even.
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Necessary and sufficient condition of an Eulerian tour

A connected (multi)graph has an Eulerian tour if and only if each

vertex has even degree.

Proof.

To see that the condition is sufficient, let G be a connected graph

with even degrees. Let T =ejes...ep (where e; = (v;_1,v;)) be a
longest trail in G. Then, by the last lemma, 7T is closed, i.e.,

vo =vy. If T does not include all the edges of G then, since G is
connected, there is an edge e outside of T' such that e = (u,v;) for
some vertex v; in 7. But then 7' =ee;.1...ece1es...¢; is a trail in
G which is longer than T, contradicting the fact that 7" is a
longest trail in G. Thus, we conclude that T includes all the

edges of G and so it is an Eulerian tour. Ol
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Necessary and sufficient condition of an Eulerian trail

A connected multigraph G has an Eulerian trail if and only if it

has either 0 or 2 vertices of odd degree.

Proof.

Suppose T is an Eulerian trail from vertex u to vertex v. Ifu =v

then T is an Eulerian tour and so it follows from the theorem
that all the vertices in G have even degree. If u # v, note that the
multigraph G U {e}, where e = (u,v) is a new edge, has an Eulerian
tour, namely T'U {e}. It follows from the theorem that all the
degrees in G U {e} are even. Thus, we conclude that, in the
original multigraph G, the vertices u,v are the only ones which

have odd degree.
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Necessary and sufficient condition of an Eulerian trail

A connected multigraph G has an Eulerian trail if and only if it

has either 0 or 2 vertices of odd degree.

Proof.

Now we prove the other direction of the corollary. If G has no

vertices of odd degree then from the theorem it contains an
Eulerian tour which is also an Eulerian trail. Suppose now that
G has 2 vertices u,v of odd degree. Then G U {e}, where e = (u,v) is
a new edge, only has vertices of even degree and so, by the last

theorem, it has an Eulerian tour C. Removing the edge e from C

gives an Eulerian trail of G from u to v. Ol
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Eulerian trail and Eulerian tour in multigraphs
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Hamilton paths and cycles

Definition

A Hamilton path/cycle in a graph G is a path/cycle visiting every
vertex of G exactly once. A graph G is called Hamiltonian if it

contains a Hamilton cycle.

Hamilton cycles were introduced by Kirkman in 1856, and were
named after Sir William Hamilton, who produced a puzzle whose

goal was to find a Hamilton cycle in a specific graph.
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The lcosian Gam
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Hamilton cycle in a 3-dimensional cube
Hamilton cycle in the skeleton of the 3-dimensional cube.
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Necessary conditions for Hamiltonicity

Every Hamiltonian graph is 2-connected.

Proposition
If G is Hamiltonian then for any set S €V the graph G\ S has at

most |S| connected components.
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Necessary conditions for Hamiltonicity

Proposition
If G is Hamiltonian then for any set S €V the graph G\ S has at

most |S| connected components.

Proof.
Let Cy,...,C} be the components of G\ S. Imagine that we are

moving along a Hamilton cycle in some order, vertex-by-vertex
(we are moving clockwise, starting from some vertex in C1, say).
We must visit each component of G\ S at least once; when we
leave C; for the first time, let v; be the subsequent vertex visited
(which must be in S). Each v; must be distinct because a cycle

cannot intersect itself. Hence, S must have at least as many

vertices as the number of connected components of G\ S. O]
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Necessary conditions for Hamiltonicity

Proposition
If G is Hamiltonian then for any set S €V the graph G\ S has at

most |S| connected components.

From the Proposition we see that this graph is not Hamiltonian.
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Necessary conditions for Hamiltonicity

If a connected bipartite graph G = (V,E) with bipartition
V =AUB is Hamiltonian then |A| = |B|.

By deleting the vertices in A from G we get |B| isolated vertices

and so G\ A has |B| connected components. Thus, by Proposition
4.10 we conclude that |A| = |B|. By symmetry we can also show
that |B| = |A|. Thus, we conclude that |A| = |B]. ]
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Proposition 4.10 is not sufficient

Example

The condition in Proposition 4.10 is not sufficient to ensure that a
graph is Hamiltonian. The graph G below satisfies the condition of
Proposition 4.10 but is not Hamiltonian. Indeed, one would need to
include all the edges incident to the vertices v, vg and vg in a Hamilton

cycle of G; however, in that case the vertex u would have degree at least

3 in that Hamilton cycle, which is impossible.

p
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Dirac’'s theorem

Theorem (Dirac 1952)
If G is a simple graph with n = 3 vertices and if 6(G) =n/2, then G

is Hamiltonian.
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Best-possible minimum degree bound

The graph consisting of two cliques of orders [(n + 1)/2] and

[(n + 1)/2] sharing a vertex has minimum degree [(n — 1)/2] but is

not Hamiltonian (it is not even 2-connected).

K12 Ktz

If n is odd, then the complete bipartite graph K(,_1)2,n+1)2 has

minimum degree (n —1)/2 but is not Hamiltonian.
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Proof of Dirac's theorem

Proof.

The condition that n = 3 must be included since Ks is not
Hamiltonian but satisfies 6(K3) = |K3|/2.

If there is a non-Hamiltonian graph satisfying the hypotheses,

then adding edges cannot reduce the minimum degree, so we
may restrict our attention to maximal non-Hamiltonian graphs
G with minimum degree at least n/2. By “maximal” we mean

that for every pair (u,v) of non-adjacent vertices of G, the graph

obtained from G by adding the edge e = (u,v) is Hamiltonian.
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Proof of Dirac's theorem

Proof.
The maximality of G implies that G has a Hamilton path, say

from u =v; to v =v,, because every Hamilton cycle in GUe must
contain the new edge e. We use most of this path vq,...,v,, with a
small switch, to obtain a Hamilton cycle in G. If some neighbour
of u immediately follows a neighbour of v on the path, say

(u,v;) € E(G) and (v,v;—1) € E(G), then G has the Hamilton cycle

(w,vi,0i41,...,Un-1,V,0i-1,Vi-2,...,U2,u) shown below.
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Proof of Dirac's theorem

Proof.
To prove that such a cycle exists, we show that there is a common

index in the sets S and 7" defined by S = {i : (u,v;+1) € E(G)} and
T =1{i:(v,v;) € E(G)}. Summing the sizes of these sets yields

ISUT|+ISNT|=I|S|+|T|=d(u)+d@)=n

Neither S nor T contains the index n. This implies that
ISUT|<n, and hence [SNT| =1, as required. This is a

contradiction. ]
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Ore observed that this argument uses only that d(u) + d(v) = n.
Therefore, we can weaken the requirement of minimum degree
n/2 to require only that d(u) + d(v) = n whenever u is not adjacent

tov.

Theorem (Ore 1960)
If G is a simple graph with n = 3 vertices such that for every pair

of non-adjacent vertices u,v of G we have d(u) +d(v) = n, then G is

Hamiltonian.
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Ore's theorem

A graph meeting the conditions of Ore’s theorem: for every pair

of non-adjacent vertices u,v of G we have d(u)+d(v) = n.
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Thank you!
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