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A−B path

Definition
Let A,B⊆V. An A−B path is a path with one endpoint in A, the
other endpoint in B, and all interior vertices outside of A∪B.
Any vertex in A∩B is a trivial A−B path.
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A−B path

If X ⊆V (or X ⊆E) is such that every A−B path in G contains a
vertex (or an edge) from X, we say that X separates the sets A
and B in G. This implies in particular that A∩B⊆X.
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Menger’s theorem

Theorem (Menger’s theorem)

Let G= (V,E) be a graph and let S,T ⊆V. Then the maximum
number of vertex-disjoint S−T paths is equal to the minimum
size of an S−T separating vertex set.

Proof.
Obviously, the maximum number of disjoint paths does not
exceed the minimum size of a separating set, because for any
collection of disjoint paths, any separating set must contain a
vertex from each path. So we just need to prove there is an S−T
separating set and a collection of disjoint S−T paths with the
same size.
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Menger’s theorem

Because the maximum number of vertex-disjoint S−T paths
≤ the minimum size of an S−T separating vertex set

To prove the maximum number of vertex-disjoint S−T paths
= the minimum size of an S−T separating vertex set

We need an S−T separating set and a collection of disjoint S−T
paths with the same size.

Proof.
We use induction on |E|, the case E=; being trivial. We first
consider the case where S and T are disjoint.
Let k be the minimum size of an S−T separating vertex set.
Choose e= (u,v) ∈E. Let G′ = (V,E\e). If each S−T separating
vertex set in G′ has size at least k, then inductively there exist k
vertex-disjoint S−T paths in G′, hence in G.

Yanbo ZHANG Lecture 8. Menger’s theorem 6 / 17



Menger’s theorem

So we can assume that G′ has an S−T separating vertex set C of size
at most k−1. Then C∪ {u} and C∪ {v} are S−T separating vertex sets of
G of size k.

Since C is a separating set for G′, no component of G′ \C has elements

from both S and T. Let VS be the union of components with elements

from S, and let VT be the union of components with elements in T. If

we were to add the edge (u,v) to G′ \C then there would be a path from

S to T (because C does not separate S and T in G). So, without loss of

generality u ∈VS and v ∈VT .
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Menger’s theorem

Now, each S− (C∪ {u}) separating vertex set B of G′ has size at
least k, as it is S−T separating in G. Indeed, each S−T path P
in G intersects C∪ {u}. Let P′ be the subpath of P that goes from
S to the first time it touches C∪ {u}. If P′ ends with a vertex in C,
then u 6∈P′ so P′ is an S− (C∪ {u}) path in G′. If P′ ends in u, then
it is disjoint from C and so by the above it contains only vertices
in VS. So v 6∈P′ and again P′ is an S− (C∪ {u}) path in G′. In both
cases we showed that P′ is an S− (C∪ {u}) path in G′ so P
intersects B.
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Menger’s theorem

So by induction, G′ contains k disjoint S− (C∪ {u}) paths.
Similarly, G′ contains k disjoint (C∪ {v})−T paths. Any path in
the first collection intersects any path in the second collection
only in C, since otherwise G′ contains an S−T path avoiding C.
Hence, as |C| = k−1, we can pairwise concatenate these paths to
obtain k−1 disjoint S−T paths. We can finally obtain a kth path
by inserting the e between the path ending at u and the path
starting at v.
Yanbo ZHANG Lecture 8. Menger’s theorem 9 / 17



Menger’s theorem

It remains to consider the general situation where S and T might
not be disjoint. Let X =S∩T and apply the theorem with the
disjoint sets S′ =S\X and T′ =T \X, in the graph G′ =G\X. Let
k′ be the size of a minimum separating set in G′. We can obtain a
k′+|X|-vertex S−T separating set in G by adding every vertex in
X to an S′−T′ separating set in G′. Similarly we can obtain a
collection of k′+|X| vertex-disjoint S−T paths by adding each
vertex in X as a trivial path to a collection of vertex-disjoint
S′−T′ paths in G′.
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Corollary

Corollary
For S⊆V and v ∈V \S, the minimum number of vertices distinct
from v separating v from S in G is equal to the maximum number
of paths forming a v−S fan in G. (that is, the maximum number
of {v}−S paths which are disjoint except at v).
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Corollary

Corollary
For S⊆V and v ∈V \S, the minimum number of vertices distinct
from v separating v from S in G is equal to the maximum number
of paths forming a v−S fan in G. (that is, the maximum number
of {v}−S paths which are disjoint except at v).

Proof.
Apply Menger’s Theorem with T =N(v). Note that none of the
resulting paths go through v; if one did, then it would contain two
vertices of T, violating the definition of an S−T path. So we have
a suitable number of vertex-disjoint S−T paths not including v,
and we can append v to each path to give a v−S fan.
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Line graph

Definition
The line graph of G, written L(G), is the graph whose vertices are
the edges of G, with (e, f ) ∈E(L(G)) when e= (u,v) and f = (v,w) in
G (i.e. when e and f share a vertex).
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Corollary 3.18. Let u and v be two distinct vertices of G.

1. If (u, v) /∈ E, then the minimum number of vertices different from u, v separating u from v in
G is equal to the maximum number of internally vertex-disjoint u-v paths in G.

2. The minimum number of edges separating u from v in G is equal to the maximum number of
edge-disjoint u-v paths in G.

Proof. For (i), Apply Menger’s Theorem with S = N(u) and T = N(v).

For (ii), Apply Menger’s Theorem to the line graph of G, with S as the set of edges adjacent to u
and T as the set of edges adjacent to v.

Theorem 3.19 (Global Version of Menger’s Theorem).

1. A graph is k-connected if and only if it contains k internally vertex-disjoint paths between any
two vertices.

2. A graph is k-edge-connected if and only if it contains k edge-disjoint paths between any two
vertices.

Proof. First we prove (i). if a graph G contains k internally disjoint paths between any two vertices,
then |G| > k and G cannot be separated by fewer than k vertices; thus, G is k-connected.

Conversely, suppose that G is k-connected (and, in particular, has more than k vertices) but contains
vertices u, v not linked by k internally disjoint paths. By Corollary 3.18, u and v are adjacent; let
G′ = G\(u, v). Then G′ contains at most k − 2 internally disjoint u, v-paths. By Corollary 3.18,
we can separate u and v in G′ by a set X of at most k − 2 vertices. As |G| > k, there is at lest
one further vertex w /∈ X ∪ {u, v} in G. Now X separates w in G′ from either u or v (say, from
u). But then X ∪ {v} is a set of at most k − 1 vertices separating w from u in G, contradicting the
k-connectedness of G.

Then, (ii) follows straight from Corollary 3.18.

4 Eulerian and Hamiltonian cycles

4.1 Eulerian trails and tours

Question 4.1. Which of the two pictures below can be drawn in one go without lifting your pen
from the paper?

22

Yanbo ZHANG Lecture 8. Menger’s theorem 13 / 17



Corollary

Corollary
Let u and v be two distinct vertices of G.
1. If (u,v) 6∈E, then the minimum number of vertices different
from u,v separating u from v in G is equal to the maximum
number of internally vertex-disjoint u−v paths in G.
2. The minimum number of edges separating u from v in G is
equal to the maximum number of edge-disjoint u−v paths in G.

Proof.
For (1), apply Menger’s Theorem with S=N(u) and T =N(v).
For (2), apply Menger’s Theorem to the line graph of G, with S as
the set of edges adjacent to u and T as the set of edges adjacent
to v.
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Global version of Menger’s theorem

Theorem (Global version of Menger’s theorem)

1. A graph is k-connected if and only if it contains k internally
vertex-disjoint paths between any two vertices.
2. A graph is k-edge-connected if and only if it contains k
edge-disjoint paths between any two vertices.

Proof.
We need only to prove (1). Then (2) follows straight from the
above corollary.
For (1), if a graph G contains k internally disjoint paths between
any two vertices, then |G| > k and G cannot be separated by fewer
than k vertices; thus, G is k-connected.
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Global version of Menger’s theorem

Proof.
Conversely, suppose that G is k-connected (and, in particular, has
more than k vertices) but contains vertices u,v not linked by k
internally disjoint paths. By the above corollary, u and v are
adjacent; let G′ =G\ (u,v). Then G′ contains at most k−2
internally disjoint u,v-paths. By the above corollary, we can
separate u and v in G′ by a set X of at most k−2 vertices. As
|G| > k, there is at least one further vertex w 6∈X ∪ {u,v} in G.
Now X separates w in G′ from either u or v (say, from u). But
then X ∪ {v} is a set of at most k−1 vertices separating w from u
in G, contradicting the k-connectedness of G.
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Thank you!
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