Lecture 8. Menger's theorem

Yanbo ZHANG

Hebei Normal University

Yanbo ZHANG **[Lecture 8. Menger's theorem](#page-16-0)** 2008 1 / 17

4 0 3

≣

э

² [Global version of Menger's theorem](#page-12-0)

∢⊡

活

正々 メラメ

Definition

Let *A*, $B \subseteq V$. An *A*−*B* path is a path with one endpoint in *A*, the other endpoint in *B*, and all interior vertices outside of $A \cup B$. Any vertex in $A \cap B$ is a trivial $A - B$ path.

A−*B* path

If $X \subseteq V$ (or $X \subseteq E$) is such that every $A - B$ path in *G* contains a vertex (or an edge) from *X*, we say that *X* separates the sets *A* and *B* in *G*. This implies in particular that $A \cap B \subseteq X$.

Theorem (Menger's theorem)

Let $G = (V, E)$ *be a graph and let* $S, T \subseteq V$. Then the maximum *number of vertex-disjoint S*−*T paths is equal to the minimum size of an S*−*T separating vertex set.*

Proof.

Obviously, the maximum number of disjoint paths does not exceed the minimum size of a separating set, because for any collection of disjoint paths, any separating set must contain a vertex from each path. So we just need to prove there is an *S*−*T* separating set and a collection of disjoint *S*−*T* paths with the same size.

Because the maximum number of vertex-disjoint *S*−*T* paths ≤ the minimum size of an *S*−*T* separating vertex set To prove the maximum number of vertex-disjoint *S*−*T* paths = the minimum size of an *S*−*T* separating vertex set We need an *S*−*T* separating set and a collection of disjoint *S*−*T* paths with the same size.

Proof.

We use induction on $|E|$, the case $E = \emptyset$ being trivial. We first consider the case where *S* and *T* are disjoint. Let *k* be the minimum size of an *S*−*T* separating vertex set. Choose $e = (u, v) \in E$. Let $G' = (V, E \setminus e)$. If each $S - T$ separating vertex set in G' has size at least k , then inductively there exist k vertex-disjoint $S-T$ paths in G' , hence in G .

So we can assume that G' has an $S-T$ separating vertex set C of size at most *k*−1. Then *C*∪{*u*} and *C*∪{*v*} are *S*−*T* separating vertex sets of *G* of size *k*.

Since C is a separating set for G' , no component of $G' \setminus C$ has elements from both *S* and *T*. Let *V^S* be the union of components with elements from *S*, and let V_T be the union of components with elements in *T*. If we were to add the edge (u,v) to $G' \setminus C$ then there would be a path from *S* to *T* (because *C* does not separate *S* and *T* in *G*). So, without loss of generality $u \in V_S$ and $v \in V_T$.

Now, each $S - (C \cup \{u\})$ separating vertex set *B* of *G*['] has size at least *k*, as it is *S*−*T* separating in *G*. Indeed, each *S*−*T* path *P* in *G* intersects $C \cup \{u\}$. Let P' be the subpath of P that goes from *S* to the first time it touches $C \cup \{u\}$. If P' ends with a vertex in *C*, then $u \notin P'$ so P' is an $S - (C \cup \{u\})$ path in G' . If P' ends in u , then it is disjoint from *C* and so by the above it contains only vertices in *V_S*. So $v \notin P'$ and again *P'* is an $S - (C \cup \{u\})$ path in G' . In both cases we showed that P' is an $S - (C \cup \{u\})$ path in G' so P

Yanbo ZHANG

So by induction, *G'* contains *k* disjoint $S - (C \cup \{u\})$ paths. Similarly, *G'* contains *k* disjoint $(C \cup \{v\}) - T$ paths. Any path in the first collection intersects any path in the second collection only in *C*, since otherwise G' contains an $S-T$ path avoiding *C*. Hence, as $|C| = k - 1$, we can pairwise concatenate these paths to obtain *k*−1 disjoint *S*−*T* paths. We can finally obtain a *k*th path by inserting the *e* between the path ending at *u* and the path starting at *v*.

It remains to consider the general situation where *S* and *T* might not be disjoint. Let $X = S \cap T$ and apply the theorem with the disjoint sets $S' = S \setminus X$ and $T' = T \setminus X$, in the graph $G' = G \setminus X$. Let k' be the size of a minimum separating set in G' . We can obtain a k' + |*X*|-vertex *S* − *T* separating set in *G* by adding every vertex in *X* to an $S' - T'$ separating set in G' . Similarly we can obtain a collection of k' + |*X*| vertex-disjoint *S* − *T* paths by adding each vertex in *X* as a trivial path to a collection of vertex-disjoint $S' - T'$ paths in G' . Yanbo ZHANG [Lecture 8. Menger's theorem](#page-0-0) 10 / 17

Corollary

For $S \subseteq V$ and $v \in V \setminus S$, the minimum number of vertices distinct *from v separating v from S in G is equal to the maximum number of paths forming a v*−*S fan in G. (that is, the maximum number of* {*v*}−*S paths which are disjoint except at v).*

Corollary

For $S \subseteq V$ and $v \in V \setminus S$, the minimum number of vertices distinct *from v separating v from S in G is equal to the maximum number of paths forming a v*−*S fan in G. (that is, the maximum number of* {*v*}−*S paths which are disjoint except at v).*

Proof.

Apply Menger's Theorem with $T = N(v)$. Note that none of the resulting paths go through *v*; if one did, then it would contain two vertices of *T*, violating the definition of an *S*−*T* path. So we have a suitable number of vertex-disjoint *S*−*T* paths not including *v*, and we can append *v* to each path to give a *v*−*S* fan.

Definition

The line graph of *G*, written *L*(*G*), is the graph whose vertices are the edges of *G*, with $(e, f) \in E(L(G))$ when $e = (u, v)$ and $f = (v, w)$ in *G* (i.e. when *e* and *f* share a vertex).

Corollary

Let u and v be two distinct vertices of G.

1. If $(u, v) \notin E$, then the minimum number of vertices different *from u*,*v separating u from v in G is equal to the maximum number of internally vertex-disjoint u*−*v paths in G. 2. The minimum number of edges separating u from v in G is equal to the maximum number of edge-disjoint u*−*v paths in G.*

Proof.

For (1), apply Menger's Theorem with $S = N(u)$ and $T = N(v)$. For (2), apply Menger's Theorem to the line graph of *G*, with *S* as the set of edges adjacent to *u* and *T* as the set of edges adjacent to *v*. П

- ← 何 ▶ → 三 ▶ → 三

Theorem (Global version of Menger's theorem)

1. A graph is k-connected if and only if it contains k internally vertex-disjoint paths between any two vertices. 2. A graph is k-edge-connected if and only if it contains k edge-disjoint paths between any two vertices.

Proof.

We need only to prove (1). Then (2) follows straight from the above corollary.

For (1), if a graph *G* contains *k* internally disjoint paths between any two vertices, then $|G| > k$ and *G* cannot be separated by fewer than *k* vertices; thus, *G* is *k*-connected.

Proof.

Conversely, suppose that *G* is *k*-connected (and, in particular, has more than *k* vertices) but contains vertices *u*,*v* not linked by *k* internally disjoint paths. By the above corollary, *u* and *v* are adjacent; let G' = $G \setminus (u, v)$. Then G' contains at most $k-2$ internally disjoint *u*,*v*-paths. By the above corollary, we can separate *u* and *v* in G' by a set X of at most $k-2$ vertices. As $|G| > k$, there is at least one further vertex $w \notin X \cup \{u, v\}$ in *G*. Now X separates w in G' from either u or v (say, from u). But then $X \cup \{v\}$ is a set of at most $k-1$ vertices separating w from u in *G*, contradicting the *k*-connectedness of *G*.

Thank you!

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Ε