Lecture 8. Menger's theorem

Yanbo ZHANG

Hebei Normal University

Yanbo ZHANG

Lecture 8. Menger's theorem

∃ >

2 Global version of Menger's theorem

Yanbo ZHANG

Lecture 8. Menger's theorem

E

A B M A B M

Definition

Let $A, B \subseteq V$. An A - B path is a path with one endpoint in A, the other endpoint in B, and all interior vertices outside of $A \cup B$. Any vertex in $A \cap B$ is a trivial A - B path.

A-B path

If $X \subseteq V$ (or $X \subseteq E$) is such that every A - B path in G contains a vertex (or an edge) from X, we say that X separates the sets A and B in G. This implies in particular that $A \cap B \subseteq X$.

Theorem (Menger's theorem)

Let G = (V, E) be a graph and let $S, T \subseteq V$. Then the maximum number of vertex-disjoint S - T paths is equal to the minimum size of an S - T separating vertex set.

Proof.

Obviously, the maximum number of disjoint paths does not exceed the minimum size of a separating set, because for any collection of disjoint paths, any separating set must contain a vertex from each path. So we just need to prove there is an S - T separating set and a collection of disjoint S - T paths with the same size.

Because the maximum number of vertex-disjoint S - T paths \leq the minimum size of an S - T separating vertex set To prove the maximum number of vertex-disjoint S - T paths = the minimum size of an S - T separating vertex set We need an S - T separating set and a collection of disjoint S - Tpaths with the same size.

Proof.

We use induction on |E|, the case $E = \emptyset$ being trivial. We first consider the case where S and T are disjoint. Let k be the minimum size of an S - T separating vertex set. Choose $e = (u, v) \in E$. Let $G' = (V, E \setminus e)$. If each S - T separating vertex set in G' has size at least k, then inductively there exist kvertex-disjoint S - T paths in G', hence in G.

Menger's theorem

So we can assume that G' has an S - T separating vertex set C of size at most k - 1. Then $C \cup \{u\}$ and $C \cup \{v\}$ are S - T separating vertex sets of G of size k.

Since *C* is a separating set for *G'*, no component of *G'* \ *C* has elements from both *S* and *T*. Let V_S be the union of components with elements from *S*, and let V_T be the union of components with elements in *T*. If we were to add the edge (u,v) to $G' \setminus C$ then there would be a path from *S* to *T* (because *C* does not separate *S* and *T* in *G*). So, without loss of generality $u \in V_S$ and $v \in V_T$.

Yanbo ZHANG

Now, each $S - (C \cup \{u\})$ separating vertex set B of G' has size at least k, as it is S - T separating in G. Indeed, each S - T path Pin G intersects $C \cup \{u\}$. Let P' be the subpath of P that goes from S to the first time it touches $C \cup \{u\}$. If P' ends with a vertex in C, then $u \notin P'$ so P' is an $S - (C \cup \{u\})$ path in G'. If P' ends in u, then it is disjoint from C and so by the above it contains only vertices in V_S . So $v \notin P'$ and again P' is an $S - (C \cup \{u\})$ path in G'. In both cases we showed that P' is an $S - (C \cup \{u\})$ path in G' so P

intersects B Yanbo ZHANG

Menger's theorem

So by induction, G' contains k disjoint $S - (C \cup \{u\})$ paths. Similarly, G' contains k disjoint $(C \cup \{v\}) - T$ paths. Any path in the first collection intersects any path in the second collection only in C, since otherwise G' contains an S - T path avoiding C. Hence, as |C| = k - 1, we can pairwise concatenate these paths to obtain k - 1 disjoint S - T paths. We can finally obtain a kth path by inserting the e between the path ending at u and the path starting at v.

Yanbo ZHANG

Menger's theorem

It remains to consider the general situation where S and T might not be disjoint. Let $X = S \cap T$ and apply the theorem with the disjoint sets $S' = S \setminus X$ and $T' = T \setminus X$, in the graph $G' = G \setminus X$. Let k' be the size of a minimum separating set in G'. We can obtain a k' + |X|-vertex S - T separating set in G by adding every vertex in X to an S' - T' separating set in G'. Similarly we can obtain a collection of k' + |X| vertex-disjoint S - T paths by adding each vertex in X as a trivial path to a collection of vertex-disjoint T' naths in G'Yanbo ZHANG 10 / 17

Lecture 8. Menger's theorem

Corollary

For $S \subseteq V$ and $v \in V \setminus S$, the minimum number of vertices distinct from v separating v from S in G is equal to the maximum number of paths forming a v - S fan in G. (that is, the maximum number of $\{v\} - S$ paths which are disjoint except at v).

Corollary

For $S \subseteq V$ and $v \in V \setminus S$, the minimum number of vertices distinct from v separating v from S in G is equal to the maximum number of paths forming a v - S fan in G. (that is, the maximum number of $\{v\} - S$ paths which are disjoint except at v).

Proof.

Apply Menger's Theorem with T = N(v). Note that none of the resulting paths go through v; if one did, then it would contain two vertices of T, violating the definition of an S - T path. So we have a suitable number of vertex-disjoint S - T paths not including v, and we can append v to each path to give a v - S fan.

Definition

The line graph of *G*, written L(G), is the graph whose vertices are the edges of *G*, with $(e,f) \in E(L(G))$ when e = (u,v) and f = (v,w) in *G* (i.e. when *e* and *f* share a vertex).

Corollary

Let u and v be two distinct vertices of G.

1. If $(u,v) \notin E$, then the minimum number of vertices different from u,v separating u from v in G is equal to the maximum number of internally vertex-disjoint u - v paths in G. 2. The minimum number of edges separating u from v in G is equal to the maximum number of edge-disjoint u - v paths in G.

Proof.

For (1), apply Menger's Theorem with S = N(u) and T = N(v). For (2), apply Menger's Theorem to the line graph of *G*, with *S* as the set of edges adjacent to *u* and *T* as the set of edges adjacent to *v*.

→ ∃ →

Theorem (Global version of Menger's theorem)

 A graph is k-connected if and only if it contains k internally vertex-disjoint paths between any two vertices.
A graph is k-edge-connected if and only if it contains k edge-disjoint paths between any two vertices.

Proof.

We need only to prove (1). Then (2) follows straight from the above corollary.

For (1), if a graph *G* contains *k* internally disjoint paths between any two vertices, then |G| > k and *G* cannot be separated by fewer than *k* vertices; thus, *G* is *k*-connected.

Proof.

Conversely, suppose that G is k-connected (and, in particular, has more than k vertices) but contains vertices u, v not linked by k internally disjoint paths. By the above corollary, u and v are adjacent; let $G' = G \setminus (u, v)$. Then G' contains at most k - 2internally disjoint *u*,*v*-paths. By the above corollary, we can separate *u* and *v* in *G'* by a set *X* of at most k-2 vertices. As |G| > k, there is at least one further vertex $w \notin X \cup \{u, v\}$ in *G*. Now X separates w in G' from either u or v (say, from u). But then $X \cup \{v\}$ is a set of at most k - 1 vertices separating w from uin G, contradicting the k-connectedness of G.

Thank you!

Yanbo ZHANG

Lecture 8. Menger's theorem

æ