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Vertex cut and cut vertex

Definition
A vertex cut in a connected graph G= (V,E) is a set S⊆V such
that G\S :=G[V \S] has more than one connected component. A
cut vertex is a vertex v such that {v} is a cut.
206 9 Connectivity

G1 G2 G3 G4

Fig. 9.1. Four connected graphs

G1 is a tree, a minimal connected graph; deleting any edge disconnects it. G2

cannot be disconnected by the deletion of a single edge, but can be disconnected
by the deletion of one vertex, its cut vertex. There are no cut edges or cut vertices
in G3, but even so G3 is clearly not as well connected as G4, the complete graph
on five vertices. Thus, intuitively, each successive graph is better connected than
the previous one. We now introduce two parameters of a graph, its connectivity
and edge connectivity, which measure the extent to which it is connected. We first
define these parameters in terms of numbers of disjoint paths connecting pairs
of vertices, and then relate those definitions to sizes of vertex and edge cuts, as
suggested by the above examples.

Connectivity and Local Connectivity

We begin by discussing the notion of vertex connectivity, commonly referred to
simply as connectivity. Recall that xy-paths P and Q in G are internally disjoint
if they have no internal vertices in common, that is, if V (P ) ∩ V (Q) = {x, y}.
The local connectivity between distinct vertices x and y is the maximum number
of pairwise internally disjoint xy-paths, denoted p(x, y); the local connectivity is
undefined when x = y. The matrix in Figure 9.2b displays the local connectivities
between all pairs of vertices of the graph shown in Figure 9.2a. (The function
shown in Figure 9.2c will be defined shortly.)

A nontrivial graph G is k-connected if p(u, v) ≥ k for any two distinct vertices
u and v. By convention, a trivial graph is 0-connected and 1-connected, but is not
k-connected for any k > 1. The connectivity κ(G) of G is the maximum value of k
for which G is k-connected. Thus, for a nontrivial graph G,

κ(G) := min{p(u, v) : u, v ∈ V, u �= v} (9.1)

A graph is 1-connected if and only if it is connected; equivalently, a graph
has connectivity zero if and only if it is disconnected. Nonseparable graphs on at
least three vertices are 2-connected; conversely, every 2-connected loopless graph
is nonseparable. For the four graphs shown in Figure 9.1, κ(G1) = 1, κ(G2) = 1,
κ(G3) = 3, and κ(G4) = 4. Thus, of these four graphs, the only graph that is
4-connected is G4. Graphs G3 and G4 are 2-connected and 3-connected, whereas
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k-connected and connectivity

Definition
G is called k-connected if |V(G)| > k and if G\X is connected for
every set X ⊆V with |X| < k. In other words, no two vertices of G
are separated by fewer than k other vertices. Every (non-empty)
graph is 0-connected. The 1-connected graphs are precisely the
non-trivial connected graphs. The greatest integer k such that G
is k-connected is the connectivity κ(G) of G.

Remark. K1 is connected but not 1-connected.
Except for K1, ‘connected graph’=‘1-connected graph’.
In some other literatures, K1 is also 1-connected.
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k-connected and connectivity

The left graph is 1-connected and 2-connected. Its connectivity
κ(G)= 2.
The right graph is 1-connected, 2-connected, 3-connected and
4-connected. Its connectivity κ(G)= 4.
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k-connected and connectivity

G=Kn: κ(G)= n−1.

G=Km,n, m≤ n: κ(G)=m. Indeed, let G have bipartition A∪B,
with |A| =m and |B| = n. Deleting A disconnects the graph. On
the other hand, deleting S⊆V with |S| <m leaves both A\S and
B\S non-empty and any A\S is connected to any B\S. Hence,
G\S is connected.
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Cut vertex and vertex cut
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Connectivity and minimum degree

Proposition
For every graph G, κ(G)≤ δ(G).

Proof.
If G is a complete graph then trivially κ(G)= δ(G)= |G|−1.
Otherwise let v ∈G be a vertex of minimum degree d(v)= δ(G).
Deleting N(v) disconnects v from the rest of G.

Remark. High minimum degree does not imply high
connectivity. Consider two disjoint copies of Kn.
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Mader’s theorem

Theorem (Mader’s theorem)

Every graph of average degree at least 4k has a k-connected
subgraph.

Proof.
For k ∈ {0,1} the assertion is trivial; we consider k≥ 2 and a graph
G= (V,E) with |V| = n and |E| =m. For inductive reasons it will
be easier to prove the stronger assertion that G has a
k-connected subgraph whenever

• (i) n≥ 2k−1 and

• (ii) m≥ (2k−3)(n−k+1)+1.

(This assertion is indeed stronger, i.e. (i) and (ii) follow from our
assumption of d(G)≥ 4k: (i) holds since n>∆(G)≥ 4k, while (ii)
follows from m= 1

2d(G)n≥ 2kn.)
Yanbo ZHANG Lecture 6. Vertex connectivity 9 / 13



Stronger assertion

Theorem (Stronger assertion)

Let G= (V,E) with |V| = n and |E| =m. If n≥ 2k−1,
m≥ (2k−3)(n−k+1)+1, then G has a k-connected subgraph.

Proof.

We apply induction on n. If n= 2k−1, then k= 1
2 (n+1), and hence

m≥ (n−2)
n+1

2
+1= 1

2
n(n−1)

by (ii). Thus G=Kn ⊇Kk+1, proving our claim.
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Stronger assertion

Proof.
We therefore assume that n≥ 2k.
If v is a vertex with d(v)≤ 2k−3, then G\v has n−1 vertices and at
least (2k−3)[(n−1)−k+1]+1 edges. We can apply the induction
hypothesis to G\v and are done. So we assume that δ(G)≥ 2k−2.
If G is itself not k-connected, then there is a separating set X ⊆V with
less than k vertices, such that G\X has two components on the vertex
sets V1,V2. Let Gi =G[Vi ∪X], so that G=G1 ∪G2, and every edge of G
is either in G1 or G2 (or both). Each vertex in each Vi has at least
δ(G)≥ 2k−2 neighbours in G and thus also in Gi, so |G1|, |G2| ≥ 2k−1.
Note that each |Gi| < n, so by the induction hypothesis, if no Gi has a
k-connected subgraph then each

e(Gi)≤ (2k−3)(|Gi|−k+1)
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Stronger assertion

Proof.
Hence,

m≤ e(G1)+e(G2)

≤ (2k−3)(|G1|+ |G2|−2k+2)

≤ (2k−3)(n−k+1) (since |G1 ∩G2| ≤ k−1),

contradicting (ii).
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Thank you!
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