Lecture 6. Vertex connectivity

Yanbo ZHANG

Hebei Normal University

Yanbo ZHANG

Lecture 6. Vertex connectivity

< ∃ ▶

1 Vertex connectivity

2 Mader's theorem

Yanbo ZHANG

Lecture 6. Vertex connectivity

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Definition

A vertex cut in a connected graph G = (V, E) is a set $S \subseteq V$ such that $G \setminus S := G[V \setminus S]$ has more than one connected component. A cut vertex is a vertex v such that $\{v\}$ is a cut.

Definition

G is called *k*-connected if |V(G)| > k and if $G \setminus X$ is connected for every set $X \subseteq V$ with |X| < k. In other words, no two vertices of *G* are separated by fewer than *k* other vertices. Every (non-empty) graph is 0-connected. The 1-connected graphs are precisely the non-trivial connected graphs. The greatest integer *k* such that G is *k*-connected is the connectivity $\kappa(G)$ of *G*.

Remark. K_1 is connected but not 1-connected. Except for K_1 , 'connected graph'='1-connected graph'. In some other literatures, K_1 is also 1-connected.

k-connected and connectivity

The left graph is 1-connected and 2-connected. Its connectivity $\kappa(G) = 2$.

The right graph is 1-connected, 2-connected, 3-connected and 4-connected. Its connectivity $\kappa(G) = 4$.

$$G = K_n: \kappa(G) = n - 1.$$

 $G = K_{m,n}, m \le n$: $\kappa(G) = m$. Indeed, let *G* have bipartition $A \cup B$, with |A| = m and |B| = n. Deleting *A* disconnects the graph. On the other hand, deleting $S \subseteq V$ with |S| < m leaves both $A \setminus S$ and $B \setminus S$ non-empty and any $A \setminus S$ is connected to any $B \setminus S$. Hence, $G \setminus S$ is connected.

Cut vertex and vertex cut

Yanbo ZHANG

Lecture 6. Vertex connectivity

∃ ► < ∃ ►</p>

æ

Connectivity and minimum degree

Proposition

For every graph G, $\kappa(G) \leq \delta(G)$.

Proof.

If *G* is a complete graph then trivially $\kappa(G) = \delta(G) = |G| - 1$.

Otherwise let $v \in G$ be a vertex of minimum degree $d(v) = \delta(G)$.

Deleting N(v) disconnects v from the rest of G.

Remark. High minimum degree does not imply high connectivity. Consider two disjoint copies of K_n .

Theorem (Mader's theorem)

Every graph of average degree at least 4k has a k-connected subgraph.

Proof.

For $k \in \{0, 1\}$ the assertion is trivial; we consider $k \ge 2$ and a graph

G = (V, E) with |V| = n and |E| = m. For inductive reasons it will

be easier to prove the stronger assertion that G has a

k-connected subgraph whenever

- (i) $n \ge 2k 1$ and
- (ii) $m \ge (2k-3)(n-k+1)+1$.

(This assertion is indeed stronger, i.e. (i) and (ii) follow from our assumption of $\overline{d}(G) \ge 4k$: (i) holds since $n > \Delta(G) \ge 4k$, while (ii) follows from $m = \frac{1}{2}\overline{d}(G)n \ge 2kn$.)

Theorem (Stronger assertion)

Let
$$G = (V, E)$$
 with $|V| = n$ *and* $|E| = m$. *If* $n \ge 2k - 1$,

 $m \ge (2k-3)(n-k+1)+1$, then G has a k-connected subgraph.

Proof.

We apply induction on *n*. If n = 2k - 1, then $k = \frac{1}{2}(n + 1)$, and hence

$$m \ge (n-2)\frac{n+1}{2} + 1 = \frac{1}{2}n(n-1)$$

by (ii). Thus $G = K_n \supseteq K_{k+1}$, proving our claim.

Stronger assertion

Proof.

We therefore assume that $n \ge 2k$.

If *v* is a vertex with $d(v) \le 2k - 3$, then $G \setminus v$ has n - 1 vertices and at least (2k-3)[(n-1)-k+1]+1 edges. We can apply the induction hypothesis to $G \setminus v$ and are done. So we assume that $\delta(G) \ge 2k - 2$. If G is itself not k-connected, then there is a separating set $X \subseteq V$ with less than *k* vertices, such that $G \setminus X$ has two components on the vertex sets V_1, V_2 . Let $G_i = G[V_i \cup X]$, so that $G = G_1 \cup G_2$, and every edge of G is either in G_1 or G_2 (or both). Each vertex in each V_i has at least $\delta(G) \ge 2k - 2$ neighbours in *G* and thus also in G_i , so $|G_1|, |G_2| \ge 2k - 1$. Note that each $|G_i| < n$, so by the induction hypothesis, if no G_i has a *k*-connected subgraph then each

 $e(G_i) \le (2k-3)(|G_i|-k+1)$

Proof.

Hence,

$$\begin{split} &m \leq e(G_1) + e(G_2) \\ &\leq (2k-3)(|G_1| + |G_2| - 2k + 2) \\ &\leq (2k-3)(n-k+1) \quad (\text{since } |G_1 \cap G_2| \leq k-1), \end{split}$$

contradicting (ii).

∃ >

Thank you!

Yanbo ZHANG

Lecture 6. Vertex connectivity

13 / 13

2

イロト イヨト イヨト イヨト