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Vertex cut and cut vertex

Definition
A vertex cut in a connected graph G = (V,E) is a set S €V such
that G\ S := G[V \ S] has more than one connected component. A

cut vertex is a vertex v such that {v} is a cut.

G
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k-connected and connectivity

Definition

G is called k-connected if |V(G)| > k and if G\ X is connected for
every set X €V with |X| <k. In other words, no two vertices of G
are separated by fewer than % other vertices. Every (non-empty)
graph is 0-connected. The 1-connected graphs are precisely the
non-trivial connected graphs. The greatest integer & such that G

is k-connected is the connectivity x(G) of G.

Remark. K; is connected but not 1-connected.
Except for K1, ‘connected graph’=‘1-connected graph’.

In some other literatures, K; is also 1-connected.
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k-connected and connectivity

The left graph is 1-connected and 2-connected. Its connectivity
x(G) =2.
The right graph is 1-connected, 2-connected, 3-connected and

4-connected. Its connectivity x(G) = 4.
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k-connected and connectivity

G=K,: x(G)=n-1.

G =Kpn, m =n: k(G) =m. Indeed, let G have bipartition AUB,
with |A| =m and |B| =n. Deleting A disconnects the graph. On
the other hand, deleting S €V with |S| <m leaves both A\ S and
B\ S non-empty and any A\ S is connected to any B\ S. Hence,
G\ S is connected.
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Cut vertex and vertex cut

A\
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Connectivity and minimum degree

Proposition
For every graph G, «(G) < 6(G).

If G is a complete graph then trivially x(G) = 6(G) = |G| — 1.
Otherwise let v € G be a vertex of minimum degree d(v) = §(G).

Deleting N(v) disconnects v from the rest of G. O]

Remark. High minimum degree does not imply high

connectivity. Consider two disjoint copies of K,,.
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Mader's theorem

Theorem (Mader's theorem)

Every graph of average degree at least 4k has a k-connected
subgraph.

Proof.
For % € {0, 1} the assertion is trivial; we consider £ = 2 and a graph

G = (V,E) with |V| =n and |E| = m. For inductive reasons it will

be easier to prove the stronger assertion that G has a

k-connected subgraph whenever

e )n=2k—-1and

o i)m=2k-3)n—-k+1)+1.
(This assertion is indeed stronger, i.e. (i) and (ii) follow from our
assumption of d(G) = 4k: (i) holds since n > A(G) = 4k, while (ii)

follows from m = %d(G)n = 2kn.)
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Stronger assertion

Theorem (Stronger assertion)

Let G=(V,E) with |V|=nand |[E|=m. If n =2k — 1,
m=2k-3)n—-k+1)+1, then G has a k-connected subgraph.

We apply induction on n. If n =2k -1, then & = %(n +1), and hence

+1 1
mZ(n—2)nT+1=§n(n—1)

by (ii). Thus G =K,, 2 K}, 1, proving our claim.
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Stronger assertion

Proof.

We therefore assume that n = 2k.

If v is a vertex with d(v) < 2k — 3, then G\ v has n — 1 vertices and at
least (2k —3)[(n—1)—k + 1]+ 1 edges. We can apply the induction
hypothesis to G \ v and are done. So we assume that 6(G) = 2k — 2.

If G is itself not £-connected, then there is a separating set X <V with
less than % vertices, such that G\ X has two components on the vertex
sets V1,Vy. Let G; = G[V; uX], so that G = G1 UGg, and every edge of G
is either in G or G (or both). Each vertex in each V; has at least

6(G) = 2k — 2 neighbours in G and thus also in Gj, so |G1],|Ge| =2k — 1.
Note that each |G;| < n, so by the induction hypothesis, if no G; has a
k-connected subgraph then each

e(G)) <2k -3)(G;| -k +1)
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Stronger assertion

Hence,
m <e(G1)+e(Gs)
< (2k-3)(G1] + G2l — 2k +2)
<(2k-3)n—-k+1) (since|G1NnGo|<k-1),
contradicting (ii). O]
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Thank you!
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