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Directed graph

Recall that a graph G is a pair G= (V,E) where V is a set of
vertices and E is a (multi)set of unordered pairs of vertices.

Definition
A directed graph G, or digraph for short, is a pair G= (V,E)
where V is a set of vertices and E is a (multi)set of ordered pairs
of vertices. Equivalently, a digraph is a (possibly not-simple)
graph where each edge is assigned a direction.

A graph A digraph
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Directed graph

Definition
Let v be a vertex in a digraph. The outdegree d+(v) is the number
of edges with tail v. The indegree d−(v) is the number of edges
with head v.

203 Chapter 4: Connectivity and Paths Section 4.2: k›connected Graphs 204

an edge to an ancestor explored, we record for the vertices on the path in
T between them that there is an edge from a descendant to an ancestor.
When w becomes active again, we check whether it was ever so marked.

With v and w as above, in any rooted subtree of T ′ there is an edge from
a descendant of the root to an ancestor of the root. Hence no proper subset
of T ′(v) induces a block, because an additional vertex can be added via a
path to an ancestor and then down through T , without introducing a cut-
vertex. On the other hand, since there is no edge joining T ′ to an ancestor of
w, then w is a cut-vertex, and hence G[V (T ′) ∪ {w}] is a maximal subgraph
having no cut-vertex.

4.1.37. An algorithm to compute the strong components of a digraph. The
algorithm is the same as Algorithm 4.1.23, except that all edges mentioned
there are treated as directed edges, from tail to head in the order named
there, and “block” changes to “strong component”.

The proof that the algorithm works is essentially the same as Exer-
cise 4.1.36. If there is a path from S to S that visits a vertex outside S,
then S cannot be the vertex set of a strong component. When w becomes
active from below with no edge from a descendant to an ancestor, all edges
involving V (T ′) ∪ {w} and the remaining vertices are directed in toward
V (T ′) ∪ {w}. Thus a strong component is discovered.

4.2. k›CONNECTED GRAPHS

4.2.1. In the graph below, κ(u, v) = 3 and κ ′(u, v) = 5. Deleting the vertices
marked 1, 2, 3 or the edges marked a, b, c, d, e makes v unreachable from u.
These prove the upper bounds. Exhibiting a set of three pairwise internally
disjoint u, v-paths proves κ(u, v) ≥ 3, since distinct vertices must be deleted
to cut the paths. Exhibiting a set of five pairwise edge-disjoint u, v-paths
proves κ ′(u, v) ≥ 5, since distinct edges must be deleted to cut the paths.
Lacking colors, we have not drawn these paths.
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4.2.2. If G is 2-edge-connected and G ′ is obtained from G by subdividing an
edge of G, then G ′ is 2-edge-connected. Let G ′ be obtained by subdividing
an edge e, introducing a new vertex w. A graph is 2-edge-connected if and
only if every edge lies on a cycle. This holds for G. If also holds for G ′,
since every cycle in G containing e can be replaced with a cycle using the
two edges incident to w instead of e.

Every graph having a closed-ear decomposition is 2-edge-connected. A
cycle is 2-edge-connected; we show that adding ears and closed ears pre-
serves 2-edge-connectedness. An ear or closed ear can be added by adding
an edge joining existing endpoints or a double edge joining an old vertex to
a new vertex, following by subdividing to lengthen the ear.

We have shown that subdivision preserves 2-edge-connectedness. The
other operations preserve old cycles. When we add an edge, the new edge
form a cycle with a path joining its endpoints. When we add two edges
with the same endpoints, together they form a cycle. Hence the additions
also preserve 2-edge-connectedness.

4.2.3. An example of digraph connectivity. In the digraph G with vertex
set [12] defined by i → j if and only if i divides j , κ(1, 12) is undefined and
κ ′(1, 12) = 5. Because 1 → 12, there is no way to make 12 unreachable
from 1 by deleting other vertices. Because there are pairwise edge-disjoint
paths from 1 to 12 through 2,3,4,6 and directly, it is necessary to delete at
least five edges to make 12 unreachable from 1. Deleting the five edges
entering 12 accomplishes this.
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4.2.4. If P is a u, v-path in a 2-connected graph G, then there need not
be a u, v-path internally disjoint from P. The graph G = K4 − uv with
V (G) = {u, v, x, y} is 2-connected (connected and no cut-vertex), but it has
no u, v-path internally disjoint from the u, v-path P that visits vertices
u, x, y, v in order.

4.2.5. If G be a simple graph, and H is the graph with vertex set V (G) such
that uv ∈ E(H) if and only if u, v appear on a common cycle in G, then H is

In the above digraph, d+(10)= 0,d−(10)= 3,d+(4)= 2,d+(4)= 2.
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Sketch of the first proof

Theorem (Cayley’s formula)

There are nn−2 trees with vertex set [n].

Sketch of the first proof.
Iteratively delete the leaf with the smallest label and append the
label of its neighbour to the sequence. After n−2 iterations a
single edge remains and we have produced a Prüfer sequence
f (T) of length n−2.
We prove that there is a bijection from the set of all trees on n
vertices onto their Prüfer sequences. Because there are nn−2

Prüfer sequences, our proof is done.
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Second proof

Theorem (Cayley’s formula)

There are nn−2 trees with vertex set [n].

Second proof, Joyal 1981.
Let tn be the number of labelled trees on n vertices. We need to
prove that tn = nn−2. For each labelled tree, we choose two
vertices from the tree, called L and R (L and R can be the same
vertex). Let Tn be the family of labelled trees with two
distinguished vertices L and R. Clearly, |Tn| = tnn2, and it is thus
enough to prove that |Tn| = nn.

236 Cayley’s formula for the number of trees

� First proof (Bijection). The classical and most direct method is to find
a bijection from the set of all trees on n vertices onto another set whose
cardinality is known to be nn−2. Naturally, the set of all ordered sequences
(a1, . . . , an−2) with 1 ≤ ai ≤ n comes into mind. Thus we want to
uniquely encode every tree T by a sequence (a1, . . . , an−2). Such a code
was found by Prüfer and is contained in most books on graph theory.

Here we want to discuss another bijection proof, due to Joyal, which is
less known but of equal elegance and simplicity. For this, we consider not
just trees t on N = {1, . . . , n} but trees together with two distinguished

vertices, the left end and the right end , which may coincide. Let
Tn = {(t; , )} be this new set; then, clearly, |Tn| = n2Tn.

1 1 1 1

22 2 2

The four trees of T2

Our goal is thus to prove |Tn| = nn. Now there is a set whose size is
known to be nn, namely the set NN of all mappings from N into N . Thus
our formula is proved if we can find a bijection from NN onto Tn.

Let f : N −→ N be any map. We represent f as a directed graph �Gf by
drawing arrows from i to f(i).

For example, the map

f =

(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)
is represented by the directed graph in the margin.
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Look at a component of �Gf . Since there is precisely one edge emanating
from each vertex, the component contains equally many vertices and edges,
and hence precisely one directed cycle. Let M ⊆ N be the union of the
vertex sets of these cycles. A moment’s thought shows that M is the unique
maximal subset of N such that the restriction of f onto M acts as a bijection

on M . Write f |M =

(
a b . . . z

f(a) f(b) . . . f(z)

)
such that the numbers

a, b, . . . , z in the first row appear in natural order. This gives us an ordering
f(a), f(b), . . . , f(z) of M according to the second row. Now f(a) is our
left end and f(z) is our right end.

The tree t corresponding to the map f is now constructed as follows: Draw
f(a), . . . , f(z) in this order as a path from f(a) to f(z), and fill in the
remaining vertices as in �Gf (deleting the arrows).

In our example above we obtain M = {1, 4, 5, 7, 8, 9}

f |M =

(
1 4 5 7 8 9
7 9 1 5 8 4

)
and thus the tree t depicted in the margin.
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It is immediate how to reverse this correspondence: Given a tree t, we look
at the unique path P from the left end to the right end. This gives us the
set M and the mapping f |M . The remaining correspondences i→ f(i) are
then filled in according to the unique paths from i to P . �
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Second proof (continued)

Second proof.
(continued) We know that the number of all mappings f : [n]→ [n]
is nn. To prove |Tn| = nn, we’ll describe a bijection between the set
of all mappings f : [n]→ [n], and Tn.
So, let f : [n]→ [n] be a mapping. We represent f as a directed
graph Gf with vertex set [n] and the set of directed edges
E(Gf )= {(i, f (i)) | 1≤ i≤ n}.

f =
(

1 2 . . . n
a1 a2 . . . an

)
, where 1≤ ai ≤ n.
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Second proof (continued)

Example. f =
(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)

236 Cayley’s formula for the number of trees

� First proof (Bijection). The classical and most direct method is to find
a bijection from the set of all trees on n vertices onto another set whose
cardinality is known to be nn−2. Naturally, the set of all ordered sequences
(a1, . . . , an−2) with 1 ≤ ai ≤ n comes into mind. Thus we want to
uniquely encode every tree T by a sequence (a1, . . . , an−2). Such a code
was found by Prüfer and is contained in most books on graph theory.

Here we want to discuss another bijection proof, due to Joyal, which is
less known but of equal elegance and simplicity. For this, we consider not
just trees t on N = {1, . . . , n} but trees together with two distinguished

vertices, the left end and the right end , which may coincide. Let
Tn = {(t; , )} be this new set; then, clearly, |Tn| = n2Tn.

1 1 1 1

22 2 2

The four trees of T2

Our goal is thus to prove |Tn| = nn. Now there is a set whose size is
known to be nn, namely the set NN of all mappings from N into N . Thus
our formula is proved if we can find a bijection from NN onto Tn.

Let f : N −→ N be any map. We represent f as a directed graph �Gf by
drawing arrows from i to f(i).

For example, the map

f =

(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)
is represented by the directed graph in the margin.
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Look at a component of �Gf . Since there is precisely one edge emanating
from each vertex, the component contains equally many vertices and edges,
and hence precisely one directed cycle. Let M ⊆ N be the union of the
vertex sets of these cycles. A moment’s thought shows that M is the unique
maximal subset of N such that the restriction of f onto M acts as a bijection

on M . Write f |M =

(
a b . . . z

f(a) f(b) . . . f(z)

)
such that the numbers

a, b, . . . , z in the first row appear in natural order. This gives us an ordering
f(a), f(b), . . . , f(z) of M according to the second row. Now f(a) is our
left end and f(z) is our right end.

The tree t corresponding to the map f is now constructed as follows: Draw
f(a), . . . , f(z) in this order as a path from f(a) to f(z), and fill in the
remaining vertices as in �Gf (deleting the arrows).

In our example above we obtain M = {1, 4, 5, 7, 8, 9}

f |M =

(
1 4 5 7 8 9
7 9 1 5 8 4

)
and thus the tree t depicted in the margin.
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It is immediate how to reverse this correspondence: Given a tree t, we look
at the unique path P from the left end to the right end. This gives us the
set M and the mapping f |M . The remaining correspondences i→ f(i) are
then filled in according to the unique paths from i to P . �

(continued) Gf is a digraph in which the outdegree of every
vertex is exactly one. In each component of Gf , the number of
vertices equals the number of edges, and hence each component
contains precisely one directed cycle.
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Second proof (continued)

Example. f =
(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)

236 Cayley’s formula for the number of trees

� First proof (Bijection). The classical and most direct method is to find
a bijection from the set of all trees on n vertices onto another set whose
cardinality is known to be nn−2. Naturally, the set of all ordered sequences
(a1, . . . , an−2) with 1 ≤ ai ≤ n comes into mind. Thus we want to
uniquely encode every tree T by a sequence (a1, . . . , an−2). Such a code
was found by Prüfer and is contained in most books on graph theory.

Here we want to discuss another bijection proof, due to Joyal, which is
less known but of equal elegance and simplicity. For this, we consider not
just trees t on N = {1, . . . , n} but trees together with two distinguished

vertices, the left end and the right end , which may coincide. Let
Tn = {(t; , )} be this new set; then, clearly, |Tn| = n2Tn.

1 1 1 1

22 2 2

The four trees of T2

Our goal is thus to prove |Tn| = nn. Now there is a set whose size is
known to be nn, namely the set NN of all mappings from N into N . Thus
our formula is proved if we can find a bijection from NN onto Tn.

Let f : N −→ N be any map. We represent f as a directed graph �Gf by
drawing arrows from i to f(i).

For example, the map

f =

(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)
is represented by the directed graph in the margin.

8

1
97

5 3

6

10

Gf

4

2

Look at a component of �Gf . Since there is precisely one edge emanating
from each vertex, the component contains equally many vertices and edges,
and hence precisely one directed cycle. Let M ⊆ N be the union of the
vertex sets of these cycles. A moment’s thought shows that M is the unique
maximal subset of N such that the restriction of f onto M acts as a bijection

on M . Write f |M =

(
a b . . . z

f(a) f(b) . . . f(z)

)
such that the numbers

a, b, . . . , z in the first row appear in natural order. This gives us an ordering
f(a), f(b), . . . , f(z) of M according to the second row. Now f(a) is our
left end and f(z) is our right end.

The tree t corresponding to the map f is now constructed as follows: Draw
f(a), . . . , f(z) in this order as a path from f(a) to f(z), and fill in the
remaining vertices as in �Gf (deleting the arrows).

In our example above we obtain M = {1, 4, 5, 7, 8, 9}

f |M =

(
1 4 5 7 8 9
7 9 1 5 8 4

)
and thus the tree t depicted in the margin.
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It is immediate how to reverse this correspondence: Given a tree t, we look
at the unique path P from the left end to the right end. This gives us the
set M and the mapping f |M . The remaining correspondences i→ f(i) are
then filled in according to the unique paths from i to P . �

(continued) Let M be the union of the vertex sets of these cycles.
In order to create a tree, we need to get rid of these cycles. It is
easy to see that f restricted to M is a bijection; moreover, M is the
unique maximal set on which f acts as a bijection.

Yanbo ZHANG Lecture 5. Cayley’s formula: A second proof 9 / 16



Second proof (continued)

Example. f =
(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)

M = (1,4,5,7,8,9)

f |M =
(
1 4 5 7 8 9
7 9 1 5 8 4

)
Write f |M such that the numbers in the first row appear in
natural order (1< 4< 5< 7< 8< 9). This gives us an ordering of

M according to the second row. For f |M =
(

v1 . . . vk

f (v1) . . . f (vk)

)
such

that v1 < v2 < ·· · < vk, we can choose f (v1) as the vertex L, f (vk) as
the vertex R. The tree T corresponding to f is constructed as
follows: Draw a path f (v1), f (v2), . . . , f (vk), and fill in the
remaining vertices as in Gf .
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Second proof (continued)

Example. f =
(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)

M = (1,4,5,7,8,9)

f |M =
(
1 4 5 7 8 9
7 9 1 5 8 4

)

236 Cayley’s formula for the number of trees

� First proof (Bijection). The classical and most direct method is to find
a bijection from the set of all trees on n vertices onto another set whose
cardinality is known to be nn−2. Naturally, the set of all ordered sequences
(a1, . . . , an−2) with 1 ≤ ai ≤ n comes into mind. Thus we want to
uniquely encode every tree T by a sequence (a1, . . . , an−2). Such a code
was found by Prüfer and is contained in most books on graph theory.

Here we want to discuss another bijection proof, due to Joyal, which is
less known but of equal elegance and simplicity. For this, we consider not
just trees t on N = {1, . . . , n} but trees together with two distinguished

vertices, the left end and the right end , which may coincide. Let
Tn = {(t; , )} be this new set; then, clearly, |Tn| = n2Tn.

1 1 1 1

22 2 2

The four trees of T2

Our goal is thus to prove |Tn| = nn. Now there is a set whose size is
known to be nn, namely the set NN of all mappings from N into N . Thus
our formula is proved if we can find a bijection from NN onto Tn.

Let f : N −→ N be any map. We represent f as a directed graph �Gf by
drawing arrows from i to f(i).

For example, the map

f =

(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)
is represented by the directed graph in the margin.
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Look at a component of �Gf . Since there is precisely one edge emanating
from each vertex, the component contains equally many vertices and edges,
and hence precisely one directed cycle. Let M ⊆ N be the union of the
vertex sets of these cycles. A moment’s thought shows that M is the unique
maximal subset of N such that the restriction of f onto M acts as a bijection

on M . Write f |M =

(
a b . . . z

f(a) f(b) . . . f(z)

)
such that the numbers

a, b, . . . , z in the first row appear in natural order. This gives us an ordering
f(a), f(b), . . . , f(z) of M according to the second row. Now f(a) is our
left end and f(z) is our right end.

The tree t corresponding to the map f is now constructed as follows: Draw
f(a), . . . , f(z) in this order as a path from f(a) to f(z), and fill in the
remaining vertices as in �Gf (deleting the arrows).

In our example above we obtain M = {1, 4, 5, 7, 8, 9}

f |M =

(
1 4 5 7 8 9
7 9 1 5 8 4

)
and thus the tree t depicted in the margin.
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It is immediate how to reverse this correspondence: Given a tree t, we look
at the unique path P from the left end to the right end. This gives us the
set M and the mapping f |M . The remaining correspondences i→ f(i) are
then filled in according to the unique paths from i to P . �Yanbo ZHANG Lecture 5. Cayley’s formula: A second proof 11 / 16



Second proof (continued)

It is immediate how to reverse this correspondence: Given a tree
T with two distinguished vertices L and R, we look at the unique
path P from the left end to the right end. This gives us the set M
and the mapping f |M. The remaining correspondences i→ f (i) are
then filled in according to the unique paths from i to P.
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Get a tree with two distinguished vertices from a mapping

f =
(
1 2 3 4 5 6
1 5 6 3 4 4

)

M = {1,3,4,6}, f |M =
(
1 3 4 6
1 6 3 4

)
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Get a mapping from a tree with two distinguished vertices

f |M =
(
1 3 4 6
1 6 3 4

)

f =
(
1 2 3 4 5 6
1 5 6 3 4 4

)
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Thank you!
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Second proof (continued)

Example. f =
(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)

236 Cayley’s formula for the number of trees

� First proof (Bijection). The classical and most direct method is to find
a bijection from the set of all trees on n vertices onto another set whose
cardinality is known to be nn−2. Naturally, the set of all ordered sequences
(a1, . . . , an−2) with 1 ≤ ai ≤ n comes into mind. Thus we want to
uniquely encode every tree T by a sequence (a1, . . . , an−2). Such a code
was found by Prüfer and is contained in most books on graph theory.

Here we want to discuss another bijection proof, due to Joyal, which is
less known but of equal elegance and simplicity. For this, we consider not
just trees t on N = {1, . . . , n} but trees together with two distinguished

vertices, the left end and the right end , which may coincide. Let
Tn = {(t; , )} be this new set; then, clearly, |Tn| = n2Tn.

1 1 1 1

22 2 2

The four trees of T2

Our goal is thus to prove |Tn| = nn. Now there is a set whose size is
known to be nn, namely the set NN of all mappings from N into N . Thus
our formula is proved if we can find a bijection from NN onto Tn.

Let f : N −→ N be any map. We represent f as a directed graph �Gf by
drawing arrows from i to f(i).

For example, the map

f =

(
1 2 3 4 5 6 7 8 9 10
7 5 5 9 1 2 5 8 4 7

)
is represented by the directed graph in the margin.
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Look at a component of �Gf . Since there is precisely one edge emanating
from each vertex, the component contains equally many vertices and edges,
and hence precisely one directed cycle. Let M ⊆ N be the union of the
vertex sets of these cycles. A moment’s thought shows that M is the unique
maximal subset of N such that the restriction of f onto M acts as a bijection

on M . Write f |M =

(
a b . . . z

f(a) f(b) . . . f(z)

)
such that the numbers

a, b, . . . , z in the first row appear in natural order. This gives us an ordering
f(a), f(b), . . . , f(z) of M according to the second row. Now f(a) is our
left end and f(z) is our right end.

The tree t corresponding to the map f is now constructed as follows: Draw
f(a), . . . , f(z) in this order as a path from f(a) to f(z), and fill in the
remaining vertices as in �Gf (deleting the arrows).

In our example above we obtain M = {1, 4, 5, 7, 8, 9}

f |M =

(
1 4 5 7 8 9
7 9 1 5 8 4

)
and thus the tree t depicted in the margin.
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It is immediate how to reverse this correspondence: Given a tree t, we look
at the unique path P from the left end to the right end. This gives us the
set M and the mapping f |M . The remaining correspondences i→ f(i) are
then filled in according to the unique paths from i to P . �

(continued) Gf is a digraph in which the outdegree of every
vertex is exactly one. In each component of Gf , the number of
vertices equals the number of edges, and hence each component
contains precisely one directed cycle.
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