Lecture 3. Graph parameters and trees

Yanbo ZHANG

Hebei Normal University

Yanbo ZHANG **Lecture 3.** Graph parameters and trees 1 / 14

6 [Graph parameters](#page-2-0)

2 [Trees](#page-6-0)

³ [Equivalent definitions of trees](#page-10-0)

4 [Spanning tree](#page-19-0)

Yanbo ZHANG **Lecture 3.** Graph parameters and trees 2 / 14

活

ヨメ イヨメ

3

Definition

 $-$

A clique in *G* is a complete subgraph in *G*. An independent set is an empty induced subgraph in *G*.

4

 \mathcal{D} 1 3 clique in G 1 4 independent set in G

3

4

Let $\omega(G)$ denote the number of vertices in a maximum-size clique in G; let $\alpha(G)$ denote the number of vertices in a maximum-size independent set in G.

Let $\omega(G)$ denote the number of vertices in a maximum-size clique in G; let $\alpha(G)$ denote the number of vertices in a maximum-size independent set in G.

Claim

A vertex set $U \subseteq V(G)$ *is a clique if and only if* $U \subseteq V(G)$ *is an*

independent set.

Let $\omega(G)$ denote the number of vertices in a maximum-size clique in G; let $\alpha(G)$ denote the number of vertices in a maximum-size independent set in G.

Claim

A vertex set $U \subseteq V(G)$ *is a clique if and only if* $U \subseteq V(G)$ *is an*

independent set.

Corollary

We have
$$
\omega(G) = \alpha(\overline{G})
$$
 and $\alpha(G) = \omega(\overline{G})$.

A graph having no cycle is acyclic. A forest is an acyclic graph; a tree is a connected acyclic graph. A leaf (or pendant vertex) is a vertex of degree 1.

endpoints of a maximum [pa](#page-5-0)t[h](#page-7-0) ϵ ϵ ϵ [an](#page-5-0)[d](#page-6-0) [th](#page-7-0)e p[a](#page-9-0)th ϵ and the path a

Lemma

Every finite tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree with n−1 *vertices.*

Lemma

Every finite tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree with n−1 *vertices.*

Proof.

Every connected graph with at least two vertices has an edge. In an acyclic graph, the endpoints of a maximum path have only one neighbour on the path and therefore have degree 1. Hence the endpoints of a maximum path provide the two desired leaves.

Lemma

Every finite tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree with n−1 *vertices.*

Proof.

Every connected graph with at least two vertices has an edge. In an acyclic graph, the endpoints of a maximum path have only one neighbour on the path and therefore have degree 1. Hence the endpoints of a maximum path provide the two desired leaves. Suppose *v* is a leaf of a tree *G*, and let $G' = G \setminus v$. If $u, w \in V(G')$, then no u, w -path *P* in *G* can pass through the vertex *v* of degree 1, so *P* is also present in G' . Hence G' is connected. Since deleting a vertex cannot create a cycle, G' is also acyclic. We conclude that G' is a tree with $n-1$ vertices.

An edge of a graph is a cut-edge if its deletion disconnects the graph.

э \rightarrow э

An edge of a graph is a cut-edge if its deletion disconnects the graph.

Lemma

An edge contained in a cycle is not a cut-edge.

3. 드라

An edge of a graph is a cut-edge if its deletion disconnects the graph.

Lemma

An edge contained in a cycle is not a cut-edge.

Proof.

 $\overline{}$

Let (u, v) belong to a cycle. Then any path $x \dots y$ in G which uses the edge (u, v) can be extended to a walk in $G \setminus (u, v)$. \Box

Proof of Theorem 2.4. We first demonstrate the equivalence of [\(a\),](#page-11-0) [\(b\)](#page-13-0)[,](#page-9-0) [\(c](#page-10-0)[\)](#page-12-0) [b](#page-13-0)[y](#page-9-0) [p](#page-10-0)[ro](#page-18-0)[vi](#page-19-0)[n](#page-9-0)[g](#page-10-0) [t](#page-18-0)[ha](#page-19-0)[t a](#page-0-0)[ny t](#page-22-0)wo

Theorem

For an n-vertex simple graph G (with $n \geq 1$ *), the following are equivalent (and characterize the trees with n vertices).*

- *(a) G is connected and has no cycles.*
- *(b) G is connected and has n*−1 *edges.*
- *(c) G has n*−1 *edges and no cycles.*
- • *(d)* For every pair $u, v \in V(G)$, there is exactly one (u, v) -path *in G.*

 $(a) \Rightarrow (b)$, (*c*): We use induction on *n*. For *n* = 1, an acyclic 1-vertex graph has no edge. For the induction step, suppose *n* > 1, and suppose the implication holds for graphs with fewer than *n* vertices. Given *G*, we can find a leaf *v* such that $G' = G \setminus v$ is acyclic and connected. Applying the induction hypothesis to *G* 0 $yields$ $e(G') = n-2$, and hence $e(G) = n-1$.

 $(a) \Rightarrow (b)$, (*c*): We use induction on *n*. For *n* = 1, an acyclic 1-vertex graph has no edge. For the induction step, suppose *n* > 1, and suppose the implication holds for graphs with fewer than *n* vertices. Given *G*, we can find a leaf *v* such that $G' = G \setminus v$ is acyclic and connected. Applying the induction hypothesis to *G* 0 $yields$ $e(G') = n-2$, and hence $e(G) = n-1$.

 $(b) \Rightarrow (a)$, (c) : Delete edges from cycles of *G* one by one until the resulting graph G' is acyclic. By the last lemma, G' is connected. By the above paragraph, G' has $n-1$ edges. Since this equals $|E(G)|$, no edges were deleted, and G itself is acyclic. \Box

 $(c) \Rightarrow (a)$, (*b*): Suppose *G* has *k* components with orders n_1, \ldots, n_k . Since *G* has no cycles, each component satisfies property (a), and by the first paragraph the *i*th component has $n_i - 1$ edges. Summing this over all components yields $e(G) = \sum (n_i - 1) = n - k$. We are given $e(G) = n - 1$, so $k = 1$, and G is connected.

 $(c) \Rightarrow (a)$, (*b*): Suppose *G* has *k* components with orders n_1, \ldots, n_k . Since *G* has no cycles, each component satisfies property (a), and by the first paragraph the *i*th component has $n_i - 1$ edges. Summing this over all components yields $e(G) = \sum (n_i - 1) = n - k$. We are given $e(G) = n - 1$, so $k = 1$, and G is connected.

 (d) ⇒ (a) : If there is a *u*,*v*-path for every $u, v \in V(G)$, then *G* is connected. If *G* has a cycle *C*, then *G* has two paths between any pair of vertices on *C*.

 $(a) \Rightarrow (d)$: Since *G* is connected, *G* has at least one *u*, *v*-path for each pair $u, v \in V(G)$. Suppose *G* has distinct *u*, *v*-paths *P* and *Q*. Let $e = (x, y)$ be an edge in *P* but not in *Q*. The concatenation of *P* with the reverse of *Q* is a closed walk in which *e* appears exactly once. Hence, $(P∪Q) \e$ is an *x*, *y*-walk not containing *e*. This *x*,*y*-walk contains an *x*,*y*-path, which completes a cycle with *e* and contradicts the hypothesis that *G* is acyclic. Hence *G* has exactly one *u*,*v*-path. \Box

Given a connected graph *G*, a spanning tree *T* is a subgraph of *G* which is a tree and contains every vertex of *G*.

Given a connected graph *G*, a spanning tree *T* is a subgraph of *G* which is a tree and contains every vertex of *G*.

Corollary

- *(a) Every connected graph on n vertices has at least n*−1 *edges and contains a spanning tree;*
- *(b) Every edge of a tree is a cut-edge;*
- *(c) Adding an edge to a tree creates exactly one cycle.*

- (a) Delete edges from cycles of *G* one by one until the $\mathop{\mathrm{resulting}}\nolimits$ graph G' is acyclic. Because G' is connected, it is a tree. Therefore *G* contains a spanning tree and has at least *n*−1 edges.
- (b) Note that deleting an edge from a tree *T* on *n* vertices leaves *n*−2 edges, so the graph is disconnected by (a).
- (c) Let $u, v \in T$. There is a unique path in T between u and v , so adding an edge (*u*,*v*) closes this path to a unique cycle.

Thank you!

そロト

 \mathcal{A} 向 \rightarrow Ε

化重氮化重氮