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Clique, independent set

Definition
A clique in G is a complete subgraph in G. An independent set is
an empty induced subgraph in G.

1.9 Graph operations and parameters

Definition 1.39. Given G = (V,E), the complement G of G has the same vertex set V and
(u, v) ∈ E

(
G
)
if and only if (u, v) /∈ E(G).

Example 1.40.
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Definition 1.41. A clique in G is a complete subgraph in G. An independent set is an empty
induced subgraph in G.

Example 1.42.
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Notation 1.43. Let ω(G) denote the number of vertices in a maximum-size clique in G; let α(G)
denote the number of vertices in a maximum-size independent set in G.

Exercise 2. In Example 1.42, ω(G) = 3 and α(G) = 2.

Claim 1.44. A vertex set U ⊆ V (G) is a clique if and only if U ⊆ V
(
G
)
is an independent set.

Corollary 1.45. We have ω(G) = α
(
G
)
and α(G) = ω

(
G
)
.

2 Trees

2.1 Trees

Definition 2.1. A graph having no cycle is acyclic. A forest is an acyclic graph; a tree is a connected
acyclic graph. A leaf (or pendant vertex ) is a vertex of degree 1.

Example 2.2.
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Clique number and independence number

Definition
Let ω(G) denote the number of vertices in a maximum-size clique
in G; let α(G) denote the number of vertices in a maximum-size
independent set in G.

Claim

A vertex set U ⊆V(G) is a clique if and only if U ⊆V(G) is an
independent set.

Corollary

We have ω(G)=α(G) and α(G)=ω(G).
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Trees

Definition
A graph having no cycle is acyclic. A forest is an acyclic graph; a
tree is a connected acyclic graph. A leaf (or pendant vertex) is a
vertex of degree 1.

forest tree

Lemma 2.3. Every finite tree with at least two vertices has at least two leaves. Deleting a leaf from
an n-vertex tree produces a tree with n− 1 vertices.

Proof. Every connected graph with at least two vertices has an edge. In an acyclic graph, the
endpoints of a maximum path have only one neighbour on the path and therefore have degree 1.
Hence the endpoints of a maximum path provide the two desired leaves.

u v

(If v had multiple neighbours on the path we would
get a cycle).

Suppose v is a leaf of a tree G, and let G′ = G\v. If u,w ∈ V (G′), then no u,w-path P in G can
pass through the vertex v of degree 1, so P is also present in G′. Hence G′ is connected. Since
deleting a vertex cannot create a cycle, G′ is also acyclic. We conclude that G′ is a tree with n− 1
vertices.

2.2 Equivalent definitions of trees

Theorem 2.4. For an n-vertex simple graph G (with n ≥ 1), the following are equivalent (and
characterize the trees with n vertices).

(a) G is connected and has no cycles.

(b) G is connected and has n− 1 edges.

(c) G has n− 1 edges and no cycles.

(d) For every pair u, v ∈ V (G), there is exactly one u, v-path in G.

To prove this theorem we will need a small lemma.

Definition 2.5. An edge of a graph is a cut-edge if its deletion disconnects the graph.

Lemma 2.6. An edge contained in a cycle is not a cut-edge.

Proof. Let (u, v) belong to a cycle.

u u1 u2 uk−1 v

11
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Leaves of a tree

Lemma
Every finite tree with at least two vertices has at least two leaves.
Deleting a leaf from an n-vertex tree produces a tree with n−1
vertices.

Proof.
Every connected graph with at least two vertices has an edge. In an
acyclic graph, the endpoints of a maximum path have only one
neighbour on the path and therefore have degree 1. Hence the
endpoints of a maximum path provide the two desired leaves.
Suppose v is a leaf of a tree G, and let G′ =G\v. If u,w ∈V(G′), then no
u,w-path P in G can pass through the vertex v of degree 1, so P is also
present in G′. Hence G′ is connected. Since deleting a vertex cannot
create a cycle, G′ is also acyclic. We conclude that G′ is a tree with n−1
vertices.
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Cut-edge

Definition
An edge of a graph is a cut-edge if its deletion disconnects the
graph.

Lemma
An edge contained in a cycle is not a cut-edge.

Proof.
Let (u,v) belong to a cycle. Then any path x . . .y in G which uses
the edge (u,v) can be extended to a walk in G\ (u,v).Then any path x . . . y in G which uses the edge (u, v) can be extended to a walk in G\(u, v) as
follows:

x u v y
 

x u u1 uk−1 v y

Proof of Theorem 2.4. We first demonstrate the equivalence of (a), (b), (c) by proving that any two
of {connected, acyclic, n− 1 edges} implies the third.

(a) =⇒ (b), (c): We use induction on n. For n = 1, an acyclic 1-vertex graph has no edge. For
the induction step, suppose n > 1, and suppose the implication holds for graphs with fewer than n
vertices. Given G, Lemma 2.3 provides a leaf v and states that G′ = G\v is acyclic and connected.
Applying the induction hypothesis to G′ yields e(G′) = n− 2, and hence e(G) = n− 1.

(b) =⇒ (a), (c): Delete edges from cycles of G one by one until the resulting graph G′ is acyclic.
By Lemma 2.6, G′ is connected. By the paragraph above, G′ has n − 1 edges. Since this equals
|E(G)|, no edges were deleted, and G itself is acyclic.

(c) =⇒ (a), (b): Suppose G has k components with orders n1, . . . , nk. Since G has no cycles, each
component satisfies property (a), and by the first paragraph the ith component has ni − 1 edges.
Summing this over all components yields e(G) =

∑
(ni − 1) = n− k. We are given e(G) = n− 1, so

k = 1, and G is connected.

(a) =⇒ (d): Since G is connected, G has at least one u, v-path for each pair u, v ∈ V (G). Suppose
G has distinct u, v-paths P and Q. Let e = (x, y) be an edge in P but not in Q. The concatenation
of P with the reverse of Q is a closed walk in which e appears exactly once. Hence, (P ∪Q)\e is an
x, y-walk not containing e. By Proposition 1.31, this contains an x, y-path, which completes a cycle
with e and contradicts the hypothesis that G is acyclic. Hence G has exactly one u, v-path.

u v

x y

Q

P

(d) =⇒ (a): If there is a u, v-path for every u, v ∈ V (G), then G is connected. If G has a cycle C,
then G has two paths between any pair of vertices on C.

Definition 2.7. Given a connected graph G, a spanning tree T is a subgraph of G which is a tree
and contains every vertex of G.

Corollary 2.8.

(a) Every connected graph on n vertices has at least n− 1 edges and contains a spanning tree;

(b) Every edge of a tree is a cut-edge;

(c) Adding an edge to a tree creates exactly one cycle.
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Equivalent definitions of trees

Theorem
For an n-vertex simple graph G (with n≥ 1), the following are
equivalent (and characterize the trees with n vertices).

• (a) G is connected and has no cycles.

• (b) G is connected and has n−1 edges.

• (c) G has n−1 edges and no cycles.

• (d) For every pair u,v ∈V(G), there is exactly one (u,v)-path
in G.
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Equivalent definitions of trees

Proof.
(a)⇒ (b), (c): We use induction on n. For n= 1, an acyclic 1-vertex
graph has no edge. For the induction step, suppose n> 1, and
suppose the implication holds for graphs with fewer than n
vertices. Given G, we can find a leaf v such that G′ =G\v is
acyclic and connected. Applying the induction hypothesis to G′

yields e(G′)= n−2, and hence e(G)= n−1.

(b)⇒ (a), (c): Delete edges from cycles of G one by one until the
resulting graph G′ is acyclic. By the last lemma, G′ is connected.
By the above paragraph, G′ has n−1 edges. Since this equals
|E(G)|, no edges were deleted, and G itself is acyclic.
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Equivalent definitions of trees

Proof.
(c)⇒ (a), (b): Suppose G has k components with orders n1, . . . ,nk.
Since G has no cycles, each component satisfies property (a), and
by the first paragraph the ith component has ni −1 edges.
Summing this over all components yields e(G)=∑

(ni −1)= n−k.
We are given e(G)= n−1, so k= 1, and G is connected.

(d)⇒ (a): If there is a u,v-path for every u,v ∈V(G), then G is
connected. If G has a cycle C, then G has two paths between any
pair of vertices on C.
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Equivalent definitions of trees

Proof.
(a)⇒ (d): Since G is connected, G has at least one u,v-path for
each pair u,v ∈V(G). Suppose G has distinct u,v-paths P and Q.
Let e= (x,y) be an edge in P but not in Q. The concatenation of P
with the reverse of Q is a closed walk in which e appears exactly
once. Hence, (P∪Q)\e is an x,y-walk not containing e. This
x,y-walk contains an x,y-path, which completes a cycle with e
and contradicts the hypothesis that G is acyclic. Hence G has
exactly one u,v-path.

Yanbo ZHANG Lecture 3. Graph parameters and trees 11 / 14



Spanning tree

Definition
Given a connected graph G, a spanning tree T is a subgraph of G
which is a tree and contains every vertex of G.

Corollary
• (a) Every connected graph on n vertices has at least n−1

edges and contains a spanning tree;

• (b) Every edge of a tree is a cut-edge;

• (c) Adding an edge to a tree creates exactly one cycle.
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Spanning tree

Proof.
• (a) Delete edges from cycles of G one by one until the

resulting graph G′ is acyclic. Because G′ is connected, it is a
tree. Therefore G contains a spanning tree and has at least
n−1 edges.

• (b) Note that deleting an edge from a tree T on n vertices
leaves n−2 edges, so the graph is disconnected by (a).

• (c) Let u,v ∈T. There is a unique path in T between u and v,
so adding an edge (u,v) closes this path to a unique cycle.
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Thank you!
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