Lecture 2. Basic notions (2)

Yanbo ZHANG

Hebei Normal University

Yanbo ZHANG

Lecture 2. Basic notions (2)

∃ >

1 Subgraphs

2 Special graphs

3 Walks, paths and cycles

4 Connectivity

5 Graph operations and parameters

3 1 4 3 1

Subgraph, spanning subgraph, induced subgraph

Definition

A graph H = (U, F) is a subgraph of a graph G = (V, E) if $U \subseteq V$

and $F \subseteq E$. If U = V then *H* is called spanning.

Subgraph, spanning subgraph, induced subgraph

Definition

A graph H = (U,F) is a subgraph of a graph G = (V,E) if $U \subseteq V$ and $F \subseteq E$. If U = V then H is called spanning.

Definition

Given G = (V, E) and $U \subseteq V$ $(U \neq \emptyset)$, let G[U] denote the graph with vertex set U and edge set $E(G[U]) = \{e \in E(G) | e \subseteq U\}$. (We include all the edges of G which have both endpoints in U). Then G[U] is called the subgraph of G induced by U.

Subgraph, spanning subgraph, induced subgraph

Definition

A graph H = (U,F) is a subgraph of a graph G = (V,E) if $U \subseteq V$ and $F \subseteq E$. If U = V then H is called spanning.

Definition

Given G = (V, E) and $U \subseteq V$ $(U \neq \emptyset)$, let G[U] denote the graph with vertex set U and edge set $E(G[U]) = \{e \in E(G) | e \subseteq U\}$. (We include all the edges of G which have both endpoints in U). Then G[U] is called the subgraph of G induced by U.

- *K_n* is the complete graph, or a clique. Take *n* vertices and all possible edges connecting them.
- An empty graph has no edges.
- G = (V, E) is bipartite if there is a partition $V = V_1 \cup V_2$ into two disjoint sets such that each $e \in E(G)$ intersects both V_1 and V_2 .
- $K_{n,m}$ is the complete bipartite graph. Take n + m vertices partitioned into a set A of size n and a set B of size m, and include every possible edge between A and B.

Yanbo ZHANG

Lecture 2. Basic notions (2)

 V_1

<ロト < 回 > < 回 > < 回 >

 V_2

æ

A walk in *G* is a sequence of vertices $v_0, v_1, v_2, ..., v_k$, and a sequence of edges $(v_i, v_{i+1}) \in E(G)$. A walk is a path if all v_i are distinct. If for such a path with $k \ge 2$, (v_0, v_k) is also an edge in *G*, then $v_0, v_1, ..., v_k, v_0$ is a cycle. For multigraphs, we also consider loops and pairs of multiple edges to be cycles.

A walk in *G* is a sequence of vertices $v_0, v_1, v_2, ..., v_k$, and a sequence of edges $(v_i, v_{i+1}) \in E(G)$. A walk is a path if all v_i are distinct. If for such a path with $k \ge 2$, (v_0, v_k) is also an edge in *G*, then $v_0, v_1, ..., v_k, v_0$ is a cycle. For multigraphs, we also consider loops and pairs of multiple edges to be cycles.

Definition

The length of a path, cycle or walk is the number of edges in it.

Example

 $v_5v_1v_3v_4$ is a path of length 3; $v_1v_2v_3v_1$ is a cycle of length 3; $v_5v_1v_2v_3v_1v_6$ is a walk of length 5.

Every walk from u to v in G contains a path between u and v.

3 1 4 3 1

Every walk from u to v in G contains a path between u and v.

Proof.

By induction on the length ℓ of the walk $u = u_0, u_1, \dots, u_\ell = v$. If $\ell = 1$ then our walk is also a path. Otherwise, if our walk is not a path there is $u_i = u_j$ with i < j, then $u = u_0, \dots, u_i, u_{j+1}, \dots, v$ is also a walk from u to v which is shorter. We can use induction to conclude the proof.

Every G with minimum degree $\delta \ge 2$ contains a path of length δ and a cycle of length at least $\delta + 1$.

3 1 4 3 1

Every G with minimum degree $\delta \ge 2$ contains a path of length δ and a cycle of length at least $\delta + 1$.

Proof.

Let v_1, \ldots, v_k be a longest path in G. Then all neighbours of v_k belong to v_1, \ldots, v_{k-1} so $k-1 \ge \delta$ and $k \ge \delta + 1$, and our path has at least δ edges. Let i $(1 \le i \le k-1)$ be the minimum index such that $(v_i, v_k) \in E(G)$. Then the neighbours of v_k are among v_i, \ldots, v_{k-1} , so $k-i \ge \delta$. Then $v_i, v_{i+1}, \ldots, v_k$ is a cycle of length at least $\delta + 1$. \Box Note that we have also proved that a graph with minimum degree $\delta \ge 2$ contains cycles of at least $\delta - 1$ different lengths. This fact, and the statement of the proposition, are both tight; to see this, consider the complete graph $G = K_{\delta+1}$.

A graph *G* is connected if for all pairs $u, v \in G$, there is a path in *G* from u to v.

A (connected) component of G is a connected subgraph that is maximal by inclusion. We say G is connected if and only if it has one connected component.

A (connected) component of G is a connected subgraph that is maximal by inclusion. We say G is connected if and only if it has one connected component.

G has 4 connected components.

A graph with n vertices and m edges has at least n - m connected components.

글 에 에 글 어

A graph with n vertices and m edges has at least n - m connected components.

Proof.

Start with the empty graph (which has n components), and add edges one-by-one. Note that adding an edge can decrease the number of components by at most 1.

Given G = (V, E), the complement \overline{G} of G has the same vertex set V and $(u, v) \in E(\overline{G})$ if and only if $(u, v) \notin E(G)$.

Given G = (V, E), the complement \overline{G} of G has the same vertex set V and $(u, v) \in E(\overline{G})$ if and only if $(u, v) \notin E(G)$.

Thank you!

2

イロト イヨト イヨト イヨト