Lecture 2. Basic notions (2)

Yanbo ZHANG

Hebei Normal University

Yanbo ZHANG [Lecture 2. Basic notions \(2\)](#page-22-0) 1 / 15

そロト

≣

 \sim э

O [Subgraphs](#page-2-0)

² [Special graphs](#page-5-0)

³ [Walks, paths and cycles](#page-7-0)

4 [Connectivity](#page-15-0)

6 [Graph operations and parameters](#page-20-0)

ミメスミメ

Subgraph, spanning subgraph, induced subgraph

Definition

A graph $H = (U, F)$ is a subgraph of a graph $G = (V, E)$ if $U \subseteq V$

and $F \subseteq E$. If $U = V$ then *H* is called spanning.

Subgraph, spanning subgraph, induced subgraph

Definition

A graph $H = (U, F)$ is a subgraph of a graph $G = (V, E)$ if $U \subseteq V$ and $F \subseteq E$. If $U = V$ then *H* is called spanning.

Definition

Given $G = (V, E)$ and $U \subseteq V$ ($U \neq \emptyset$), let $G[U]$ denote the graph with vertex set *U* and edge set $E(G[U]) = \{e \in E(G) | e \subseteq U\}$. (We include all the edges of *G* which have both endpoints in *U*). Then *G*[*U*] is called the subgraph of *G* induced by *U*.

Subgraph, spanning subgraph, induced subgraph

Definition Corollary 1.23. Every graph has an even number of vertices of odd degree.

A graph $H = (U, F)$ is a subgraph of a graph $G = (V, E)$ if $U \subseteq V$ and $F \subseteq E$. If $U = V$ then *H* is called spanning.

Definition 1.5 Subgraphs

Given $G = (V, E)$ and $U \subseteq V$ $(U \neq \emptyset)$, let $G[U]$ denote the graph with vertex set *U* and edge set $E(G[U]) = \{e \in E(G) | e \subseteq U\}$. (We include all the edges of G which have both endpoints in U). Then $G[U]$ is called the subgraph of G induced by U .

- *Kⁿ* is the complete graph, or a clique. Take *n* vertices and all possible edges connecting them.
- An empty graph has no edges.
- $G = (V, E)$ is bipartite if there is a partition $V = V_1 \cup V_2$ into two disjoint sets such that each $e \in E(G)$ intersects both V_1 and V_2 .
- • $K_{n,m}$ is the complete bipartite graph. Take $n+m$ vertices partitioned into a set *A* of size *n* and a set *B* of size *m*, and include every possible edge between *A* and *B*.

 V_1 V_2

A walk in *G* is a sequence of vertices v_0 , v_1 , v_2 , ..., v_k , and a sequence of edges $(v_i, v_{i+1}) \in E(G)$. A walk is a path if all v_i are distinct. If for such a path with $k \geq 2$, (v_0, v_k) is also an edge in *G*, then $v_0, v_1, \ldots, v_k, v_0$ is a cycle. For multigraphs, we also consider loops and pairs of multiple edges to be cycles.

A walk in *G* is a sequence of vertices $v_0, v_1, v_2, \ldots, v_k$, and a sequence of edges $(v_i, v_{i+1}) \in E(G)$. A walk is a path if all v_i are distinct. If for such a path with $k \geq 2$, (v_0, v_k) is also an edge in *G*, then $v_0, v_1, \ldots, v_k, v_0$ is a cycle. For multigraphs, we also consider loops and pairs of multiple edges to be cycles.

Definition

The length of a path, cycle or walk is the number of edges in it.

Example Example

 $v_5v_1v_3v_4$ is a path of length 5;
 $v_5v_1v_3v_4$ is a path of ength between u $v_5v_1v_3v_4$ is a path of length 3; $v_1v_2v_3v_1$ is a cycle of length 3; $v_5v_1v_2v_3v_1v_6$ is a walk of length 5.

∢⊡

Every walk from u to v in G contains a path between u and v.

4 **D** F

n. Э×. \sim э э

Every walk from u to v in G contains a path between u and v.

Proof.

By induction on the length ℓ of the walk $u = u_0, u_1, \ldots, u_\ell = v$. If $\ell = 1$ then our walk is also a path. Otherwise, if our walk is not a path there is $u_i = u_j$ with $i < j$, then $u = u_0, \ldots, u_i, u_{j+1}, \ldots, v$ is also a walk from *u* to *v* which is shorter. We can use induction to conclude the proof.

Every G with minimum degree $\delta \geq 2$ *contains a path of length* δ *and a cycle of length at least* $\delta + 1$ *.*

€ ⊡ 1

э

Every G with minimum degree $\delta \geq 2$ *contains a path of length* δ *and a cycle of length at least* $\delta + 1$.

Proof.

Let v_1, \ldots, v_k be a longest path in *G*. Then all neighbours of v_k belong to *v*1,...,*vk*−¹ so *k*−1 ≥ *δ* and *k* ≥ *δ*+1, and our path has at least δ edges. Let i (1 ≤ i ≤ k − 1) be the minimum index such that $(v_i, v_k) ∈ E(G)$. Then the neighbours of v_k are among v_i, \ldots, v_{k-1} , so $k - i \geq \delta$. Then $v_i, v_{i+1}, \ldots, v_k$ is a cycle of length at least $\delta + 1$. \Box

Note that we have also proved that a graph with minimum degree $\delta \geq 2$ contains cycles of at least $\delta - 1$ different lengths. This fact, and the statement of the proposition, are both tight; to see this, consider the complete graph $G = K_{\delta+1}$.

 τ to see this, consider the complete graph τ

Definition 1.8 Connectivity of the connection of the

A graph *G* is connected if for all pairs $u, v \in G$, there is a path in G from *u* to *v*. Note that it suffices for there to be a walk from u to v, by Proposition 1.31.

4 **D** F

A (connected) component of *G* is a connected subgraph that is maximal by inclusion. We say *G* is connected if and only if it has one connected component.

Definition not connected not connected not connected not connected not connected in the connected not connected in the connected not connected in the connected in th

Example 1.37.

A (connected) component of *G* is a connected subgraph that is maximal by inclusion. We say G is connected if and only if it has one connected component. sion. We say G is connected if and only if it has one connected component.

Proof. Start with the [e](#page-17-0)mpty [g](#page-14-0)raph[o](#page-20-0)f Ξ [and](#page-16-0) [a](#page-18-0)[d](#page-18-0)d edge o[ne](#page-14-0)[-](#page-15-0)[b](#page-19-0)[y](#page-20-0)[-o](#page-0-0)ne-by-one-b

G has 4 connected components.

A graph with n vertices and m edges has at least n−*m connected components.*

4 **D** F

 \sim ЭX. \sim ∍

A graph with n vertices and m edges has at least n−*m connected components.*

Proof.

Start with the empty graph (which has *n* components), and add edges one-by-one. Note that adding an edge can decrease the number of components by at most 1. \Box

Given $G = (V, E)$, the complement \overline{G} of G has the same vertex set *V* and $(u, v) \in E(\overline{G})$ if and only if $(u, v) \notin E(G)$.

Given $G = (V, E)$, the complement \overline{G} of G has the same vertex set *V* and $(u, v) \in E(\overline{G})$ if and only if $(u, v) \notin E(G)$. $\overline{}$. Given G of G $\overline{}$, the complement G of G has the same vertex set $\overline{}$ Given $G = (V, E)$, the com-

Example 1.42.

Thank you!

4 0 8

→ 御 * → 君 * → 君 *

Ε