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Subgraph, spanning subgraph, induced subgraph

Definition
A graph H = (U,F) is a subgraph of a graph G= (V,E) if U ⊆V
and F ⊆E. If U =V then H is called spanning.

Definition
Given G= (V,E) and U ⊆V (U 6= ;), let G[U] denote the graph
with vertex set U and edge set E(G[U])= {e ∈E(G) | e⊆U}. (We
include all the edges of G which have both endpoints in U). Then
G[U] is called the subgraph of G induced by U.

Note that δ ≤ d̄ ≤ ∆.

Definition 1.20. A graph G is d-regular if and only if all vertices have degree d.

Question 1.21. Is there a 3-regular graph on 9 vertices?

Proposition 1.22. For every G = (V,E),
∑

v∈G d(v) = 2|E|.

Proof. In the sum
∑

v∈G d(v) every edge e = (u, v) is counted twice: once from u and once from
v.

Corollary 1.23. Every graph has an even number of vertices of odd degree.

This shows that the answer to Question 1.21 is “no”.

1.5 Subgraphs

Definition 1.24. A graph H = (U,F ) is a subgraph of a graph G = (V,E) if U ⊆ V and F ⊆ E.
If U = V then H is called spanning.

Definition 1.25. Given G = (V,E) and U ⊆ V (U 6= ∅), let G[U ] denote the graph with vertex
set U and edge set E(G[U ]) = {e ∈ E(G) : e ⊆ U}. (We include all the edges of G which have both
endpoints in U). Then G[U ] is called the subgraph of G induced by U .

Example 1.26.

3

1

4

2

G =

3

1 2

induced subgraph

3

1

4

2

not induced
but spanning

1.6 Special graphs

• Kn is the complete graph, or a clique. Take n vertices and all possible edges connecting them.

• An empty graph has no edges.

• G = (V,E) is bipartite if there is a partition V = V1 ∪ V2 into two disjoint sets such that each
e ∈ E(G) intersects both V1 and V2.

• Kn,m is the complete bipartite graph. Take n + m vertices partitioned into a set A of size n
and a set B of size m, and include every possible edge between A and B.
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Special graphs

Definition
• Kn is the complete graph, or a clique. Take n vertices and all

possible edges connecting them.

• An empty graph has no edges.

• G= (V,E) is bipartite if there is a partition V =V1 ∪V2 into
two disjoint sets such that each e ∈E(G) intersects both V1

and V2.
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Example

Example 1.27.

K4 = K2,3 =

V1 V2

1.7 Walks, paths and cycles

Definition 1.28. A walk in G is a sequence of vertices v0, v1, v2, . . . , vk, and a sequence of edges
(vi, vi+1) ∈ E(G). A walk is a path if all vi are distinct. If for such a path with k ≥ 2, (v0, vk) is also
an edge in G, then v0, v1, . . . , vk, v0 is a cycle. For multigraphs, we also consider loops and pairs of
multiple edges to be cycles.

Definition 1.29. The length of a path, cycle or walk is the number of edges in it.

Example 1.30.

v5

v1

v6
v2

v3

v4 v5v1v3v4 ≡ path of length 3;

v1v2v3v1 ≡ cycle of length 3;

v5v1v2v3v1v6 ≡walk of length 5.

Proposition 1.31. Every walk from u to v in G contains a path between u and v.

Proof. By induction on the length ` of the walk u = u0, u1, . . . , v` = v.

If ` = 1 then our walk is also a path. Otherwise, if our walk is not a path there is ui = uj with i < j,
then u = u0, . . . , ui, uj+1, . . . , v is also a walk from u to v which is shorter. We can use induction to
conclude the proof.

u = u0 u1 ui−1 ui = uj uj+1 v

ui+1uj−1

Proposition 1.32. Every G with minimum degree δ ≥ 2 contains a path of length δ and a cycle of
length at least δ + 1.

8
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v5v1v3v4 is a path of length 3;
v1v2v3v1 is a cycle of length 3;
v5v1v2v3v1v6 is a walk of length 5.
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Proposition

Proposition
Every walk from u to v in G contains a path between u and v.

Proof.
By induction on the length ` of the walk u= u0,u1, . . . ,u` = v.
If `= 1 then our walk is also a path. Otherwise, if our walk is not
a path there is ui = uj with i< j, then u= u0, . . . ,ui,uj+1, . . . ,v is
also a walk from u to v which is shorter. We can use induction to
conclude the proof.
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Proposition

Proposition
Every G with minimum degree δ≥ 2 contains a path of length δ
and a cycle of length at least δ+1.

Proof.
Let v1, . . . ,vk be a longest path in G. Then all neighbours of vk

belong to v1, . . . ,vk−1 so k−1≥ δ and k≥ δ+1, and our path has at
least δ edges. Let i (1≤ i≤ k−1) be the minimum index such that
(vi,vk) ∈E(G). Then the neighbours of vk are among vi, . . . ,vk−1, so
k− i≥ δ. Then vi,vi+1, . . . ,vk is a cycle of length at least δ+1.
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Remark

Note that we have also proved that a graph with minimum
degree δ≥ 2 contains cycles of at least δ−1 different lengths.
This fact, and the statement of the proposition, are both tight; to
see this, consider the complete graph G=Kδ+1.
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Connectivity

Definition
A graph G is connected if for all pairs u,v ∈G, there is a path in G
from u to v.

Proof. Let v1, . . . , vk be a longest path in G. Then all neighbours of vk belong to v1, . . . , vk−1 so
k − 1 ≥ δ and k ≥ δ + 1, and our path has at least δ edges. Let i (1 ≤ i ≤ k − 1) be the minimum
index such that (vi, vk) ∈ E(G). Then the neighbours of vk are among vi, . . . , vk−1, so k − i ≥ δ.
Then vi, vi+1, . . . , vk is a cycle of length at least δ + 1.

v1 v2 vi vk

Remark 1.33. Note that we have also proved that a graph with minimum degree δ ≥ 2 contains
cycles of at least δ − 1 different lengths. This fact, and the statement of Proposition 1.32, are both
tight; to see this, consider the complete graph G = Kδ+1.

1.8 Connectivity

Definition 1.34. A graph G is connected if for all pairs u, v ∈ G, there is a path in G from u to v.

Note that it suffices for there to be a walk from u to v, by Proposition 1.31.

Example 1.35.

connected not connected

Definition 1.36. A (connected) component of G is a connected subgraph that is maximal by inclu-
sion. We say G is connected if and only if it has one connected component.

Example 1.37.

G =

has 4 connected components.

Proposition 1.38. A graph with n vertices and m edges has at least n−m connected components.

Proof. Start with the empty graph (which has n components), and add edges one-by-one. Note that
adding an edge can decrease the number of components by at most 1.

9
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G has 4 connected components.
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Proposition

Proposition
A graph with n vertices and m edges has at least n−m connected
components.

Proof.
Start with the empty graph (which has n components), and add
edges one-by-one. Note that adding an edge can decrease the
number of components by at most 1.
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Complement graph

Definition

Given G= (V,E), the complement G of G has the same vertex set
V and (u,v) ∈E(G) if and only if (u,v) 6∈E(G).

1.9 Graph operations and parameters

Definition 1.39. Given G = (V,E), the complement G of G has the same vertex set V and
(u, v) ∈ E

(
G
)
if and only if (u, v) /∈ E(G).

Example 1.40.

3

1

4

2

G =

3

1

4

2

G =

Definition 1.41. A clique in G is a complete subgraph in G. An independent set is an empty
induced subgraph in G.

Example 1.42.

2

1

4

3

G =

2

1 2

clique in G

1

4

independent set
in G

Notation 1.43. Let ω(G) denote the number of vertices in a maximum-size clique in G; let α(G)
denote the number of vertices in a maximum-size independent set in G.

Exercise 2. In Example 1.42, ω(G) = 3 and α(G) = 2.

Claim 1.44. A vertex set U ⊆ V (G) is a clique if and only if U ⊆ V
(
G
)
is an independent set.

Corollary 1.45. We have ω(G) = α
(
G
)
and α(G) = ω

(
G
)
.

2 Trees

2.1 Trees

Definition 2.1. A graph having no cycle is acyclic. A forest is an acyclic graph; a tree is a connected
acyclic graph. A leaf (or pendant vertex ) is a vertex of degree 1.

Example 2.2.

10
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Thank you!
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